科目名稱:工程數學甲【電機系碩士班甲組、已組、電波領域選考】 ※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

題號: 431002 共5頁第1頁

第一題到第八題為<u>單選題</u>,每題四分。請選出一個最正確選項,答錯不倒扣。

- 1. When using the Gaussian elimination to solve a linear equation Ax = b, elementary row operations (or multiplication by elementary matrices) are applied to the augmented matrix $[A \ b]$. Actually, there are many places in linear algebra where such a technique plays its role; e.g., the null space of A can be determined by setting b = 0. Which of the following cannot be determined by applying such a technique?
 - (A) the range of A
 - (B) the inverse of A (if it is nonsingular)
 - (C) the QR factorization of A
 - (D) the LU factorization of A (if it is square)
 - (E) the determinant of A (if it is square).
- 2. The linear combination of a set of vectors is an essential element in linear algebra. We say a set V is invariant under linear combination if the implication " $\forall n \in \mathbb{N}$ and any set of vectors $\{\mathbf{v}_1, \cdots, \mathbf{v}_n\} \subset V \Rightarrow$ the set of all linear combinations $\{c_1\mathbf{v}_1 + \cdots + c_n\mathbf{v}_n | c_i \in \mathbb{R}, \forall i\} \subset V$ " holds. And we say a mapping L defined on a set X is invariant under linear combination if the form of linear combination is unchanged under L, or more precisely the statement " $\forall n \in \mathbb{N}, \forall c_i \in \mathbb{R}$, and any set of vectors $\{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \subset X$, the identity $L(c_1\mathbf{x}_1 + \cdots + c_n\mathbf{x}_n) = c_1L(\mathbf{x}_1) + \cdots + c_nL(\mathbf{x}_n)$ holds" is true. Which one of the following statements related to linear combination is false
 - (A) Let S be a subset of a vector space V. Then S is a subspace of V if S is invariant under linear combination.
 - (B) Let $\{V_1, \dots, V_k\}$ be a set of k subspaces of a vector space W and denote $\operatorname{span}\{V_1, \dots, V_k\}$ as the set of all linear combinations of the form $c_1\mathbf{v}_1+\dots+c_n\mathbf{v}_n$, with each \mathbf{v}_i chosen freely from V_i . Then $\operatorname{span}\{V_1, \dots, V_k\}$ is also a subspace of W with $\dim(\operatorname{span}\{V_1, \dots, V_k\}) = \dim(V_1) + \dots + \dim(V_k)$
 - (C) Let A and B be two matrices and denote C := AB. Then each column of C is a linear combination of all columns of A, and so $rank(C) \le rank(A)$ is implied.
 - (D) A mapping L between two vector spaces is a linear transformation if and only if it is invariant under linear combination.
 - (E) Let $(V, \langle \cdot, \cdot \rangle_V)$ be an inner product space. Then $\langle \cdot, \cdot \rangle_V$ is invariant under linear combination at either one of its two arguments.
- 3. Consider the system represented by the differential equation $\ddot{x} + \dot{x} + kx = 0$. Which of the following is true? (A) the system is critically damped when k = 1 (B) the system is underdamped when k = 1/2 (C) the system is overdamped when k = 0.3 (D) the damping ratio of the system is increased when increasing k (E) none of the above
- 4. Consider the differential equation $\ddot{x} + b\dot{x} + kx = \cos(\omega t)$ and its sinusoidal solution $x_p(t)$. Which of the following is true? (A) for a fixed b, the amplitude of $x_p(t)$ is maximized when $k = \omega^2$ (B) for a fixed b, the maximal amplitude of $x_p(t)$ is 1/b (C) for fixed b and k, the amplitude of $x_p(t)$ always grows as ω increases (D) the period of $x_p(t)$ is 2ω (E) the period of $x_p(t)$ depends on b and k.
- Consider the differential equation tx + x = cos(ωt). Which of the following is true? (A) the general solution is sin(ωt) + C, C is a constant. (B) the particular (forced) solution is periodic with period ω (C) the solution is NOT bounded when t grows to infinity (D) If x(π/ω) = 1, then the solution is (sin(ωt) + π)/(ωt) (E) none of the above

背面有題

科目名稱:工程數學甲【電機系碩士班甲組、已組、電波領域選考】 ※本科目依簡章規定「可以」使用計算機(廢牌、功能不拘)(選擇題)

题號: 431002 共5頁第2頁

- 6. Consider a system whose dynamics is governed by a linear constant-coefficient ODE. Suppose the impulse response of this system is $e^{-t} e^{-3t}$. Which of the following is true? (A) the system is 3^{rd} order (B) the characteristic equation of the system has a pair of complex roots (C) the unit step response has oscillatory behavior (D) the unit step response does NOT converge to a constant value (E) the unit step response is equal to $-e^{-t} + (2 + e^{-3t})/3$
- 7. Consider the heat equation

$$\frac{\partial u}{\partial t}(x,t) = 4 \frac{\partial^2 u}{\partial x^2}(x,t), \quad \forall 0 < x < 1, \ t > 0$$

$$u(0,t) = u(1,t) = 0 \quad \forall t > 0$$

$$u(x,0) = f(x), \quad \forall 0 < x < 1$$

- (A) the heat equation is nonlinear
- (B) without considering the boundary condition, the general solution is $\sum_{n=1}^{\infty} c_n \sin(n\pi x) e^{-4n^2\pi^2 t}$
- (C) suppose $f(x) = 7\sin(3\pi x)$, then the solution is $u(x,t) = 7\sin(3\pi x)e^{-4n^2\pi^2t}$
- (D) all of the above are true
- (E) none of the above is true
- 8. Define the del operator $\nabla := \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$.
 - (A) $\nabla \cdot (\nabla \times \mathbf{F}) = 0$, where \mathbf{F} is a vector field with continuous first and second derivatives.
 - (B) $\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) \mathbf{F} \cdot (\nabla \times \mathbf{G})$, where \mathbf{F} and \mathbf{G} are two smooth vector fields
 - (C) $\nabla \cdot (\varphi \mathbf{F}) = \nabla \varphi \cdot \mathbf{F} + \varphi(\nabla \cdot \mathbf{F})$, where φ is a smooth scalar field and \mathbf{F} a smooth vector field.
 - (D) all of the above are true
 - (E) none of the above is true

第九題到第十六題為<u>單選題</u>,每題四分。請選出<u>一個最正確</u>選項,答錯<u>倒扣一分</u>。第九題到第十六題中,若z:=x+jy是一個複數,則 x,y 是實數而 j 代表 $\sqrt{-1}$ 。

- 9. The Fourier transform of the function $f(t) = \frac{d}{dt}u(t-2)$ is $F(j\omega) = e^{j\omega}(b+jc)$, where u(t) is an unit-step function. Then which of the following statements is correct?
 - (A) a = -2, b = 1, c = 0.
 - (B) a=2, b=1, c=0.
 - (C) a > 0, b > 1, c = 0.
 - (D) $a < 2, b \ne 1, c \ne 0$.
 - (E) None of the above statements are correct.
- 10. Given that f(t) has the Fourier transform $F(j\omega)$. Let $f_1(t) = f(-3t 6)$, and let the Fourier transform of $f_1(t)$ be $F_1(j\omega) = aF(jb\omega)e^{jc\omega}$. Then which of the following statements is correct?
 - (A) a=3, b=3, c=2.
 - (B) $0 < a < 1, -1 < b < 0, 0 < c \le 2$.
 - (C) a = -3, b = 1/3, c = 3.
 - . (D) a > 0, b > 0, c < 0.
 - (E) None of the above statements are correct.

科目名稱:工程數學甲【電機系碩士班甲組、己組、電波領域選考】

※本科目依簡章規定「可以」使用計算機 (廠牌、功能不拘)(選擇題)

題號:431002

共5頁第3頁

11. A Fourier transform $F(j\omega)$ of a signal f(t) is shown in Fig. 1. The evaluation of $E = \int_{-\infty}^{\infty} |f(t)|^2 dt$ is equal to α . Which of the following statements is correct?

- (A) $\alpha = 0$
- (B) $\alpha = 6\sqrt{\pi}$
- (C) $\alpha = 3\pi$
- (D) $\alpha = 3$
- (E) None of the above statements are correct.
- 12. Which one of the following f(z), where z = x + jy is a complex variable, is entire?
 - (A) $f(z) = e^{y}e^{jx}$
 - (B) f(z) = z Im z, Im z stands for the imaginary part of z
 - $(C) \quad f(z) = x^2 + jy^2$
 - (D) $f(z) = (z^2 + j2)e^{-x}e^{-iy}$
 - (E) None of the above statements are correct.
- 13. Let $f(z) = \cot z$, and C be a closed path |z| = 4 in counterclockwise direction. The evaluation of $\int_C f(z)dz$ is c + jd. Then which of the following statements is correct?
 - (A) $c < 0, d \le 0$
 - (B) c > 0, d > 0
 - (C) c = 0, 15 < d < 20
 - (D) c = 0, 1 < d < 10
 - (E) None of the above statements are correct.
- 14. Let z be a complex number. Which of the following statements is correct?
 - (A) $|\sin z|^2$ is an unbounded function.
 - (B) $|\cos z|^2$ is a bounded function.
 - (C) $\log(i^2) = 2\log i$
 - (D) $\log(e^z) = z$
 - (E) None of the above statements are correct.
- 15. Let $f(z) = z^5 + 2z^3 + 3z^2 + 2$, and let the number of zeros of f(z), counting multiplication, inside the circle |z| = 2 be α . Which of the following statements is correct?
 - (A) $\alpha = 3$
 - (B) $\alpha = 5$
 - (C) α is an even number
 - (D) $\alpha = 1$
 - (E) None of the above statements are correct.

科目名稱:工程數學甲【電機系碩士班甲組、己組、電波領域選考】 ※本科目依簡章規定「可以」使用計算機(廢牌、功能不拘)(選擇題)

題號: 431002 共5頁第4頁

16. Let $f(z) = x^2 + jy$, and C is the path from z = 0 to z = 1 + j2 along the parabola $y = x^2$. Compute the value of $\int_C f(z)dz = a + jb$. Then which of the following statements is correct?

- (A) $a < 0, b \le 0$
- (B) a+b=-2/3
- (C) a+b=2/3
- (D) a > 0, b < 0
- (E) None of the above statements are correct.

第十七題到第二十二題為<u>多選題</u>,每題六分。請選出<u>所有正確</u>選項;答題<u>完全正確</u>得六分,答錯任何選項則該題以零分計,沒有倒扣。

- 17. The *linear independence* is without doubt one of the most important concepts in linear algebra. Which of the following statements about this concept are true?
 - (A) The number of linearly independent columns of any matrix is equal to the number of linearly independent rows of the matrix.
 - (B) A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is linearly independent if there exist coefficients c_1, \dots, c_n , all of them are zero, such that $c_1\mathbf{v}_1 + \dots + c_n\mathbf{v}_n = \mathbf{0}$.
 - (C) The linear independence of a set of vectors is a necessary but not sufficient condition for them to be a basis of a vector space.
 - (D) A square matrix is diagonalizable if and only if all its eigenvectors are linearly independent.
 - (E) Let $(\lambda_i, \mathbf{x}_i)$ be the *i*th eigenvalue-eigenvector-pair of a square matrix. Then all $\lambda_i's$ are distinct if and only if the set $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of eigenvectors is linearly independent.
- 18. Let V = C[-1,1] be the vector space of all continuous functions defined on [-1,1], and let V_c and V_o denote, respectively, the set of all even and all odd functions in V. Moreover, define an inner product $\langle f,g \rangle \coloneqq \int_{-1}^1 f(x)g(x)dx$ for any $f(\cdot), g(\cdot) \in V$. Which of the following statements are true?
 - (A) Both V_e and V_a are subspaces of V.
 - (B) $V = V_e + V_o$ and $V_e \cap V_o = \mathbf{0}$.
 - (C) $V_e = V_o^{\perp}$ and $V_o = V_e^{\perp}$.
 - (D) $\dim V = \dim V_a + \dim V_a$.
 - (E) Denote $\operatorname{dist}(f, V_e)$ as the distance induced from the defined inner product between any $f(\cdot) \in V$ and V_e . Then $\operatorname{dist}((x+1)^2, V_e) = \sqrt{8/3}$.
- 19. Which of the following statements are true?
 - (A) Given A and **b** of proper dimensions, when $\mathbf{b} \not\in R(A)$ the linear equation $A\mathbf{x} = \mathbf{b}$ has no solution. However, the associated LSP (least squares problem) is always solvable and the solution is unique.
 - (B) Let V be a vector space such that $V = X \oplus Y$. Then only when $X \perp Y$, i.e. the two subspaces are orthogonal, can two projection mappings, say $P:V \to X$ and $Q:V \to Y$, be defined with the complementary property P+Q=I, where I indicates the identity mapping on V.
 - (C) (continue from (B)) The projections P and Q become orthogonal projections when $X \perp Y$. Moreover, once the bases for X and Y are chosen, their union forms a basis for V, and the

科目名稱:工程數學甲【電機系碩士班甲組、己組、電波領域選考】

題號:431002

※本科目依簡章規定「可以」使用計算機(廠牌、功能不拘)(選擇題)

共5頁第5頁

two projection matrices associated with projections P and Q with respect to this set of bases are all symmetric.

- (D) Any projection mapping is a linear transformation that is definitely onto, but may not be one-to-one.
- (E) Consider the vector space C[-1,1] with an inner product $\langle f,g\rangle \coloneqq \int_{-1}^1 f(x)g(x)dx$. Then the set $\{\mathbf{u}_1,\mathbf{u}_2\}$ with $\mathbf{u}_1=1/\sqrt{2}$ and $\mathbf{u}_2=(\sqrt{6}/2)x$ forms an orthonormal set in C[-1,1]. Moreover, the best least squares approximation to $h(x)=x^2$ by a linear function is $\hat{h}(x)=(\sqrt{2}/3)+(\sqrt{6}/4)x$.

20. Let $\mathcal{L}(\cdot)$ denote the Laplace transform. Which of the followings are true?

- (A) $\mathcal{L}(\alpha_1 \cdot f_1 + \alpha_2 \cdot f_2) = \alpha_1 \cdot \mathcal{L}(f_1) + \alpha_2 \cdot \mathcal{L}(f_2)$, for all $\alpha_1, \ \alpha_2 \in \mathbb{R}$ and for all functions $f_1, \ f_2$
- (B) if $\mathcal{L}(f) = F(s)$, then $\mathcal{L}(\frac{d}{dt}f) = sF(s)$
- (C) if $\mathcal{L}(f) = F(s)$, then $\mathcal{L}(e^{\alpha t} \cdot f) = F(s)/(s + \alpha)$
- (D) if $\mathcal{L}(f) = F(s)$, then $\mathcal{L}(t^2 \cdot f) = \frac{d^2}{ds^2} F(s)$
- (E) if $\mathcal{L}(f) = F(s)$ and $\mathcal{L}(g) = G(s)$, then $\mathcal{L}(f \cdot g) = (F * G)(s)$, where * denotes convolution operation
- 21. Consider the homogeneous system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, where $A = \begin{bmatrix} a & -2 \\ 2 & 1 \end{bmatrix}$
 - (A) the system is linear
 - (B) the system is time invariant
 - (C) the system has more than one equilibrium
 - (D) when a < -4, any initial condition results in a solution which diverges to infinity
 - (E) when -4 < a < -1, any initial condition results in a solution which converges to the origin
- 22. Consider the autonomous system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_1^2 x_2^2 \\ x_1^2 + x_2^2 8 \end{bmatrix}$
 - (A) the system is linear
 - (B) the system has two equilibria
 - (C) $(x_1, x_2) = (2, -2), (-2, -2)$ are equiliria of the system
 - (D) $(x_1, x_2) = (-2, -2)$ is the only stable equilibrium of the system
 - (E) $(x_1, x_2) = (2, -2)$ is a saddle equilibrium of the system.