國立中山大學 106 學年度碩士暨碩士專班招生考試試題

科目名稱:機率與統計【應數系碩士班甲組】

※本科目依簡章規定「不可以」使用計算機(問答申論題)

題號: 424006 共1頁第1頁

答題時,每題須寫下題號與詳細步驟。 請依題號順序作答,不會作答題目請寫下題號並留空白。

Notation:

i.i.d.: identically independently distributed; pdf: probability density function; MLE: maximum likelihood estimator; $Exp(\theta)$ random variable means a random variable with exponential distribution with a parameter θ and its pdf is $f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, x > 0$. \bar{X} is the sample mean.

1. (15%) X_1, \ldots, X_n are i.i.d. random variables with mean μ and variance σ^2 . Assume $\mu \neq 0$. What is the asymptotic distribution of

$$\sqrt{n}(\frac{1}{\bar{X}} - \frac{1}{\mu}) + \frac{\sum_{i=1}^{n} X_i^2}{n}$$
?

Express your answer using μ and σ .

- 2. (15%) A stick of unit length is randomly cut into two pieces. Please compute the expected ratio of the length of the shorter piece to that of the longer piece.
- 3. (15%) Let X_1, \ldots, X_n be i.i.d. Exp(1) random variables. Define the random variables Y_1, \ldots, Y_n by $Y_i = 1$ if $X_i \geq 3$ and $Y_i = 0$ if $X_i < 3$. Find the distribution of $\sum_{i=1}^n Y_i$.
- 4. (20%) Let X_1, \ldots, X_n be $Exp(\theta_1)$ random sample and Y_1, \ldots, Y_n $Exp(\theta_2)$ random sample. X's and Y's are independent.

Find the likelihood ratio test of $H_0: \theta_1 = \theta_2$ against $H_a: \theta_1 \neq \theta_2$ with significance level α (You have to specify the test statistic and the rejection region).

- 5. (20%) X_1, \ldots, X_n are i.i.d. Bernoulli(p) random variables. Let $q = P(X_1 = 1, X_2 = 1)$. Find the uniformly minimal-variance unbiased estimator (UMVUE) of q.
- 6. (15%) Let X_1, \ldots, X_n be a random sample from a continuous distribution F (no ties). The distribution of F has mean μ and variance σ^2 . Let X_1^*, \ldots, X_n^* be the sample with replacement randomly chosen from X_1, \ldots, X_n . Let $\bar{X}^* = \frac{\sum_{i=1}^n X_i^*}{n}$. Please Calculate $\text{Var}(\bar{X}^*)$ (Express your answer using σ and n).