國立成功大學 106 學年度碩士班招生考試試題

系 所:土木工程學系

考試科目:基礎工程

第1頁,共2頁

編號: 100

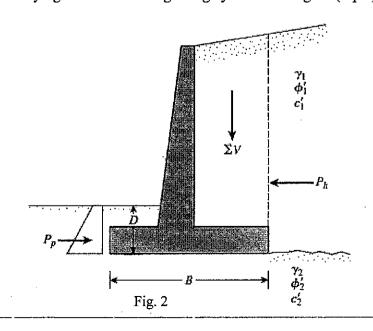
考試日期:0213,節次:1

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Make reasonable assumptions if necessary.

- 1 Answer the following questions briefly with texts and/or figures: (30 pts)
 - (1) Draw the failure plane in Terzaghi's bearing capacity theory. (6 pts)
 - (2) List factors that affect the in situ SPT-N values. (6 pts)
 - (3) Define rock quality designation and what it represents in site characterization. (6 pts)
 - (4) List the limitations of Peck's pressure envelopes. (6 pts)
 - (5) List methods for estimating pile capacity. (6 pts)
- 2 · Answer the following questions associated with lateral earth pressures. (30 pts)
 - (1) Describe the required analyses for braced cut design in sand. (6 pts)
 - (2) Derive the factor of safety against overturning using symbols in Fig. 1 and Table 1. (6 pts)

Table 1.


Section (1)	Area (2)	Weight/unit length of wall (3)	Moment arm measured from <i>C</i> (4)	Moment about <i>C</i> (5)
1	A_1	$W_1 = \gamma_1 \times A_1$. X ₁	M_1
2	A_2	$W_2 = \gamma_1 \times A_2$	X_2	M_2
3	A_3	$W_3 = \gamma_c \times A_3$	X_3	M_3
4	A_4	$W_4 = \gamma_c \times A_4$	X_4	M_4
5	A_5	$W_5 = \gamma_c \times A_5$	X_5	M_5
6	A_{6}	$W_6 = \gamma_c \times A_6$	X_6	M_b
		P_v	\vec{B}	M_v
		ΣV		ΣM_R

(*Note:* γ_i = unit weight of backfill

 γ_c = unit weight of concrete

 X_i = horizontal distance between C and the centroid of the section)

(3) Derive the factor of safety against base sliding using symbols in Fig. 2. (6 pts)

編號: 100

國立成功大學 106 學年度碩士班招生考試試題

系 所:土木工程學系

考試科目:基礎工程

考試日期:0213,節次:1

第2頁,共2頁

(4) Given the Coulomb's active earth pressure coefficient:

$$k_{a} = \frac{\cos^{2}(\phi' - \theta)}{\cos^{2}\theta\cos(\delta' + \theta) \left[1 + \sqrt{\frac{\sin(\delta' + \phi')\sin(\phi' - \alpha)}{\cos(\delta' + \theta)\cos(\theta - \alpha)}}\right]^{2}}$$
(2.1)

where α =inclination of backfill from horizontal plane, θ =inclination of retaining wall from vertical plane, δ = friction angle between the wall and the backfill material, and ϕ = effective friction angle of back fill. Derive the Rankine's active earth pressure coefficient for level backfill from Eq. (2.1). (6 pts)

- (5) Compare the free and fixed earth support methods for anchored sheet piles in terms of deflection and moment distribution. (6 pts)
- 3 · Answer the following questions of shallow foundation analysis. (20 pts)
 - (1) Explain the size effect of ultimate bearing capacity from field plate load test base on Terzaghi's bearing capacity theory. Size effect: $(q_u)_F = (q_u)_P$ (in clay), $(q_u)_F = (q_u)_P \frac{B_F}{B_P}$ (in sand); (F:

Foundation, P: Plate, B: Foundation width). (10 pts)

(2) A mat foundation on a saturated clay soil has dimensions of 20 m × 20 m. Given, c_u =25 kN/m², γ_{sat} =18.5 kN/m³. The shape and depth factors associated with cohesion are $F_{cs} = 1 + \frac{B}{L} (\frac{N_q}{N_c})$ and

 $F_{cd} = 1 + 0.4(\frac{D_f}{B})$, respectively, and where B=width, L=length, D_f=embedded depth. Calculate the depth of the mat (D_f) for a factor of safety of 2 against bearing capacity failure for a given load 40 MN. (10 pts)

- 4 · Answer the following questions related to pile foundations. (20 pts)
 - (1) State the procedure for estimating ultimate bearing capacity of group piles in saturated clay. (5 pts)
 - (2) Explain the causes of <u>negative skin friction</u> of pile and the effects on piles. (6 pts)
 - (3) Fig. 3 shows a drilled shaft embedded in two clay layers. Explicitly express the following values with symbols: (a) net ultimate point bearing capacity, (b) ultimate skin resistance, and (c) working load with FS=3.0. (9 pts)

Fig. 3