國立成功大學 106 學年度碩士班招生考試試題 系 所:土木工程學系 考試科目:基礎工程 第1頁,共2頁 編號: 100 考試日期:0213,節次:1 ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 ## Make reasonable assumptions if necessary. - 1 Answer the following questions briefly with texts and/or figures: (30 pts) - (1) Draw the failure plane in Terzaghi's bearing capacity theory. (6 pts) - (2) List factors that affect the in situ SPT-N values. (6 pts) - (3) Define rock quality designation and what it represents in site characterization. (6 pts) - (4) List the limitations of Peck's pressure envelopes. (6 pts) - (5) List methods for estimating pile capacity. (6 pts) - 2 · Answer the following questions associated with lateral earth pressures. (30 pts) - (1) Describe the required analyses for braced cut design in sand. (6 pts) - (2) Derive the factor of safety against overturning using symbols in Fig. 1 and Table 1. (6 pts) Table 1. | Section
(1) | Area
(2) | Weight/unit
length of wall
(3) | Moment arm
measured from <i>C</i>
(4) | Moment
about <i>C</i>
(5) | |----------------|-------------|--------------------------------------|---|---------------------------------| | 1 | A_1 | $W_1 = \gamma_1 \times A_1$ | . X ₁ | M_1 | | 2 | A_2 | $W_2 = \gamma_1 \times A_2$ | X_2 | M_2 | | 3 | A_3 | $W_3 = \gamma_c \times A_3$ | X_3 | M_3 | | 4 | A_4 | $W_4 = \gamma_c \times A_4$ | X_4 | M_4 | | 5 | A_5 | $W_5 = \gamma_c \times A_5$ | X_5 | M_5 | | 6 | A_{6} | $W_6 = \gamma_c \times A_6$ | X_6 | M_b | | | | P_v | \vec{B} | M_v | | | | ΣV | | ΣM_R | (*Note:* γ_i = unit weight of backfill γ_c = unit weight of concrete X_i = horizontal distance between C and the centroid of the section) (3) Derive the factor of safety against base sliding using symbols in Fig. 2. (6 pts) 編號: 100 ## 國立成功大學 106 學年度碩士班招生考試試題 系 所:土木工程學系 考試科目:基礎工程 考試日期:0213,節次:1 第2頁,共2頁 (4) Given the Coulomb's active earth pressure coefficient: $$k_{a} = \frac{\cos^{2}(\phi' - \theta)}{\cos^{2}\theta\cos(\delta' + \theta) \left[1 + \sqrt{\frac{\sin(\delta' + \phi')\sin(\phi' - \alpha)}{\cos(\delta' + \theta)\cos(\theta - \alpha)}}\right]^{2}}$$ (2.1) where α =inclination of backfill from horizontal plane, θ =inclination of retaining wall from vertical plane, δ = friction angle between the wall and the backfill material, and ϕ = effective friction angle of back fill. Derive the Rankine's active earth pressure coefficient for level backfill from Eq. (2.1). (6 pts) - (5) Compare the free and fixed earth support methods for anchored sheet piles in terms of deflection and moment distribution. (6 pts) - 3 · Answer the following questions of shallow foundation analysis. (20 pts) - (1) Explain the size effect of ultimate bearing capacity from field plate load test base on Terzaghi's bearing capacity theory. Size effect: $(q_u)_F = (q_u)_P$ (in clay), $(q_u)_F = (q_u)_P \frac{B_F}{B_P}$ (in sand); (F: Foundation, P: Plate, B: Foundation width). (10 pts) (2) A mat foundation on a saturated clay soil has dimensions of 20 m × 20 m. Given, c_u =25 kN/m², γ_{sat} =18.5 kN/m³. The shape and depth factors associated with cohesion are $F_{cs} = 1 + \frac{B}{L} (\frac{N_q}{N_c})$ and $F_{cd} = 1 + 0.4(\frac{D_f}{B})$, respectively, and where B=width, L=length, D_f=embedded depth. Calculate the depth of the mat (D_f) for a factor of safety of 2 against bearing capacity failure for a given load 40 MN. (10 pts) - 4 · Answer the following questions related to pile foundations. (20 pts) - (1) State the procedure for estimating ultimate bearing capacity of group piles in saturated clay. (5 pts) - (2) Explain the causes of <u>negative skin friction</u> of pile and the effects on piles. (6 pts) - (3) Fig. 3 shows a drilled shaft embedded in two clay layers. Explicitly express the following values with symbols: (a) net ultimate point bearing capacity, (b) ultimate skin resistance, and (c) working load with FS=3.0. (9 pts) Fig. 3