國立成功大學 106 學年度碩士班招生考試試題

編號: 126

所:工程科學系

考試科目:電子電路 考試日期:0214,節次:1

第1頁,共3頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。**讀** 依題號順序作答。

- 1. Mark each of the following statements True (T) or False (F). (Need NOT give reasons.) (20 pt.)
 - (a) The insulator, SiO2, makes the gate current of the MOSFET zero.
 - (b) The common-drain amplifier can be used to amplify the source and load with a large and small resistance, respectively.
 - (c) Integrating large capacitors and resistors is easy for the modern IC process.
 - (d) Active devices are usually used as loads for discrete-circuit amplifiers.
 - (e) Accurate current transfer ratio and small output resistance are properties of an ideal current source.
 - (f) We use short-circuit time constant for the upper 3dB frequency analysis of the amplifier.
 - (g) NMOS transistors conduct currents owing to major electrons and holes.
 - (h) Miller's effect typically has a bad influence on the bandwidth of amplifiers.
 - (i) AC coupling is typically applied in IC amplifiers.
 - (i) The saturation mode of a BJT is used to amplify the small signals.
- 2. In the following amplifier, $R_1 = 0.5 \text{ k}\Omega$, $R_2 = 0.5 \text{ M}\Omega$, $R_3 = R_4 = 20 \text{ k}\Omega$. (a) Find $A_{Id} \equiv \frac{v_O}{v_{Id}}$, where $v_{Id} = v_{I2} v_{I1}$. (10 pt.) (b) If $v_{I1} = 0.1 \sin(2\pi t) + 0.05 \cos(2\pi t)$ and $v_{I2} = 0.03 \sin(2\pi t) 0.05 \cos(2\pi t)$, find the output voltage. (10 pt.).

國立成功大學 106 學年度碩士班招生考試試題

編號: 126

系 所:工程科學系 考試科目:電子電路

考試日期:0214,節次:1

第2頁,共3頁

3. Design the following amplifier such that $v_0 = 2v_1 + 3v_2 - 4v_3$. What are R_1 , R_2 , and R_3 ? (20 pt.).

4. For the following feedback circuit, assume that for all transistors, $g_m = 10 \text{mA/V}$, $r_o = \infty$. Determine: (a) The closed-loop gain $A_f = \frac{I_o}{V_s}$, and $\frac{V_o}{V_s}$. (10 pt.) (b) The input resistance R_{in} . (5 pt.) (c) Assume that r_o of Q_3 is 50 k Ω , calculate the output resistance R_{out} . (5 pt.) [Hint: Recall that for MOSFET with a resistance R_s in its source, the resistance looking into the drain is $(r_o + R_s + g_m r_o R_s)$.]

國立成功大學 106 學年度碩士班招生考試試題

編號: 126

系 所:工程科學系 考試科目:電子電路

考試日期:0214,節次:1

第3頁,共3頁

5. In the following MOS differential amplifier, assume $g_{m1}=g_{m2}=g_{m3}=g_{m4}=40 \,\mathrm{mA/V}$ and $r_{o1}=r_{o2}=r_{o3}=r_{o4}=25\,\mathrm{k}\Omega$. Use the differential half-circuit to derive the differential gain A_d . (20 pt.)

