編號: 141

國立成功大學 106 學年度碩士班招生考試試題

系 所:航空太空工程學系

考試科目:流體力學

考試日期:0213, 節次:2

第1頁,共3頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. (20%) Ball, m = 0.1kg, released from rest at $y_0 = 200m$. y is the height position of the ball.

Air resistance, $F_D = kV^2$, where $k = 10^{-4} N \cdot s^2 / m^2$, V is the velocity of the ball, and the gravity, $g = 9.8m/s^2$.

- (a) Find the total force acting on the ball at each time, t.
- (b) Now, set the velocity, V, is also a function of y and $\frac{dV}{dt} = \frac{dV}{dy} \frac{dy}{dt} = V \frac{dV}{dy}$

Find the ordinary equation for the velocity at each position, y, and solve the solution of the ODE.

- (c) Find the speed at which the ball hits the ground, y = 0m.
- 2. (20%) Consider the two-dimensional flow field defined by the following velocity components, (u, v):

$$u = x$$
, $v = -y$

For this flow field find the equation of:

- (a) The streamline through the point (1,1) at t=0
- (b) The patheline for a particle released at the point (1,1) $a \in t = 0$
- (c) The steakline at t = 0 which passes through the point (1,1).

編號: 141

國立成功大學 106 學年度碩士班招生考試試題

系 所:航空太空工程學系

考試科目:流體力學

考試日期:0213,節次:2

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

3. Consider the two-dimensional fluid flow with velocity components:

$$u = ax + bx^2 + cy \; ; \; v = dy + exy$$

where a, b, and c are constants greater than zero.

- (a) Assume density is constant and the mass is conserved, what can be said about constant d and e. (7%)
- (b) Determine if the vorticity is zero somewhere in the flow field. Is this flow an irrotational flow? (7%)
- (c) Find the rate of angular deformation in xy plane of this flow field? (6%)
- 4. When a small tube is dipped into a pool of liquid, surface tension causes a meniscus to form at the free surface, which is elevated or depressed depending on the contact angle at the liquid-solid-gas interface. Experiments indicate that the magnitude this capillary effect $\triangle h$, is function of the tube diameter D, liquid specific weight γ and the surface tension σ . Determine the number of independent non-dimensional parameters by using dimensional analysis. (20%)

Hint: The dimension of surface tension σ is force per unit length.

國立成功大學 106 學年度碩士班招生考試試題

編號: 141

所:航空太空工程學系

考試科目:流體力學

第3頁,共3頁

考試日期:0213,節次:2

- 5. Figure below shows a flow between a rotating inner cylinder (radius $r=R_i$) with angular velocity ω and stationary outer cylinder (radius $r=R_o$) inside a rotational viscometer. Assume the flow can be modelled as Couette flow since the gap is so small and the density and viscosity of the fluid is ρ and μ . Please answer the following questions:
- (a) Derive the steady state velocity field U=f(r) between at $r=R_0$ and $r=R_i$? (10%)
- (b) If the viscometer cylinder height is L, find out the total torque ($T_{viscous}$) acting on the inner cylinder wall due to fluid viscosity. (5%)
- (c) Derive the viscosity (μ) in terms of total torque ($T_{viscous}$) acting on the inner cylinder, cylinder height (L), angular velocity (ω), outer radius (R_0) and inner radius (R_i). (5%)

