編號: 136 # 國立成功大學 106 學年度碩士班招生考試試題 系 所:航空太空工程學系 考試科目:材料力學 考試日期:0213,節次:1 ### 第1頁,共2頁 ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 1. (20%) An element in plane stresses is subjected to stresses $\sigma_x = 15$ MPa, $\sigma_y = 5$ MPa, and $\sigma_{xy} = 4$ MPa. Using Mohr's circle to determine (a) the principal stresses and planes (b) The stresses on the element rotated through an angle of 45, and (c) the maximum shear stress. 2. (15%) Consider the stepped shaft shown in Figure 1 rigidly attached to a wall at E, and determine the angle of twist of the end A when two torques at B and D are applied. Assume the shear modulus G to be 80 GPa. Figure 1 3. (15%) A rod AB as shown in Figure 2 is attached to the wall in both ends. If it is loaded by the axial forces P as shown, determine the stress at the middle of the bar. The cross section areas are A_b for part b (the middle part) and A_a for part a (both ends). Figure 2 - 4. (30%) A simply supported wood beam AB with span length L carries a uniform load of intensity q (see Figure 3). (*Note:* The Young's modulus of wood is denoted by E. The geometry of the beam is set to be L=50b and h=2b.) - (a) Calculate the maximum bending moment M_{max} and maximum shear force V_{max} of this beam. Indicate the cross section where the maximum bending moment or the maximum shear force occurs. - (b) Calculate the maximum normal stress σ_{max} and maximum shear stress τ_{max} of this beam. Indicate the point and 編號: 136 # 國立成功大學 106 學年度碩士班招生考試試題 系 所:航空太空工程學系 考試科目:材料力學 考試日期:0213, 節次:1 ## 第2頁,共2頁 its orientation where the maximum normal stress or the maximum shear stress occurs. - (c) Calculate the maximum deflection δ_{max} of this beam. Indicate the location where the maximum deflection occurs. - (d) Calculate the angle of rotation θ_C at point C of this beam. (Note: The distance between A and C is L/4.) - (e) Calculate the total strain energy stored in this beam. Figure 3 - 5. (20%) Follow Prob.4 (see Figure 3) - (a) If a roller support is added at point C, determine the reactions R_A , R_B , and R_c for this beam. (*Note:* The distance between A and C is L/4.) - (b) If an additional axial compressive force P is applied at end B, determine the critical buckling load P_{cr} . (**Note:** No roller support at point C.) #### Appendix: