國立成功大學 106 學年度碩士班招生考試試題 編號: 198

系

所:電腦與通信工程研究所

考試科目:電子學

考試日期:0214,節次:1

第1頁,共2頁

※考生請注意:本試題可使用計算機。請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. A Zener diode has an equivalent series resistance of 20 Ω . If the voltage across the Zener diode is 5.20 V at $I_z = 1$ mA, determine the voltage across the diode at $I_z = 10$ mA. (10%)
- 2. Consider an n-channel MOSFET with parameters $V_{TN} = 1 \text{ V}$, $\mu_n \text{Cox} = 40 \,\mu\text{A/V}^2$, and W/L = 40. Assume the transistor is biased in saturation region, and the drain current is $I_D = 1$ mA. Calculate the transconductance (g_m) (10%).
- 3. For the circuit shown below, the parameters are: V_{DD} = 10 V, R_1 = 70.9 k Ω , R_2 = 29.1 $k\Omega$ and $R_D = 5 k\Omega$. The transistor parameters are: $V_{TN} = 1.5 \text{ V}$, $K_n = 0.5 \text{mA/V}^2$, and $\lambda =$ 0.01 V^{-1} . Assume R_{si} = 4 $k\Omega$. Determine the small-signal voltage gain (10%), input resistance (5%) and output resistance (5%) of the common-source amplifier.

- 4. Consider a bipolar transistor that has parameters $f_T = 500$ MHz at $I_C = 1$ mA, $\beta_0 = 100$, and C_{μ} = 0.3 pF.Calculate the bandwidth f_{β} (10%) and capacitance C_{π} (10%).
- 5. Given $V_i = 20V$. Determine the output voltage V_{02} . (10%)

編號: 198

國立成功大學 106 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電子學

考試日期:0214,節次:1

第2頁,共2頁

6. Consider the four input dynamic-logic NAND gate shown below. Assume the gate is fabricated in a 0.18 μm technology for which V_{DD} = 1.8 V, V_t = 0.5 V, and $\mu_n Cox$ = $4\mu_p Cox$ = $300~\mu A/V^2$. To keep C_L small, NMOS devices with W/L = 0.27 $\mu m/0.18~\mu m$ are used. The PMOS precharge transistor Q_P has W/L = 0.54 $\mu m/$ 0.18 μm . The total capacitance C_L is found to be 20 fF.

i) Consider the precharge condition (figure (b)) with the gate of Q_P at 0 V, and assume that at t=0, C_L is fully discharged. Calculate the rise time of the output stage, defined as the time for v_y to rise from 10% to 90% of the final voltage V_{DD} . (10%)

ii) For A = B = C = D = 1, find the value of t_{PHL} . (10%)

7. Use the following circuit to realize a second-order low pass function of the maximally flat type with a 3 dB frequency of 100 kHz. Let R = $1K\Omega$. Find the values of L and C. (10%)

