編號: 194

國立成功大學 106 學年度碩士班招生考試試顯

系 所:電腦與通信工程研究所

考試科目:電磁學及電磁波

考試日期:0214,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

For your reference: $\epsilon_0 = 10^{-9}/36\pi \text{ (F/m)}; \quad \mu_0 = 4\pi \times 10^{-7} \text{ (H/m)}; \quad \eta_0 = 120\pi \text{ (}\Omega\text{)}$

Permittivity ε (= $\varepsilon_r \varepsilon_0$); Permeability μ (= $\mu_r \mu_0$); Conductivity σ

- 1. Please state the boundary conditions (including the normal component and the tangential component) of the static electric field \vec{E} and the static magnetic field \vec{H} , respectively, at the interface between the air (ϵ_0, μ_0) and a lossless medium (ϵ, μ) . (10%)
- 2. In the capacitor shown in Fig. A, the region between the plates is filled with a pure dielectric having $\epsilon_r = 4.5$. Find
 - (a) the capacitance, and (8%)
 - (b) the resistance between the plates in case the dielectric has $\sigma = 0.01 \text{ S/m}$. (7%)

- 3. (a) What is the stored magnetic energy for a current *I* flowing in a single inductor with inductance L? (5%)
 - (b) By using the stored magnetic energy, determine the inductance per unit length of an air coaxial transmission line that has a solid inner conductor of radius **a** and a very thin outer conductor of inner radius **b**. (10%)
- 4. For a plane wave travels in the $-\hat{a}_z$ direction in free space with a phase constant β of 30 rad/m. If the \vec{H} field, with an amplitude of $\left(\frac{1}{4\pi}\right)$ A/m, has the direction $-\hat{a}_y$ when t=0 and z=0, please write the suitable expression of the instantaneous fields \vec{H} and \vec{E} . Also determine the frequency f and the wavelength λ . (15%)

編號: 194

國立成功大學 106 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:電磁學及電磁波

考試日期:0214,節次:2

第2頁,共2頁

5. As shown in Fig. B for a finite transmission line which has a characteristic impedance Z_0 and is terminated with a load impedance Z_L , prove that the input impedance Z_i at $z' = \ell$ can be expressed

as
$$Z_i = Z_0 \frac{Z_L + Z_0 \tanh(\gamma \ell)}{Z_0 + Z_L \tanh(\gamma \ell)} \quad (\Omega).$$
 (15%)

Fig. B

6. A lossless, air-dielectric cylindrical waveguide, of inside diameter 4 cm, is operated at 12 GHz. For the **TM**₁₁ mode propagating in the +z direction, find the cutoff frequency, guide wavelength, and wave impedance. [hint: referred to **Table A** for the roots x_{np} of Bessel function $J_n(x)=0$.] (15%)

Table A Roots x_{np} of $J_n(x)=0$

	n = 0	n = 1	n = 2
p = 1	2.405	3.832	5.136
p = 2	5.520	7.016	8.417

7. A Hertzian dipole antenna of length $\ell=2$ m operates at 1 MHz. Assume the copper conductor of the antenna has $\sigma_c=57\times10^6$ S/m, $\mu_r=1$, and radius r=1 mm. Find (a) the skin depth in the conductor and (b) the radiation efficiency of this antenna. (15%)