編號: 197

國立成功大學 106 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:工程數學

考試日期:0214,節次:3

第1頁,共3頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. There are 5 question carrying 100 marks.

2. Credits will be given only when the question numbers and corresponding answers are indicated clearly.

1. (20 points) Solve the following initial value problem using <u>Laplace transform</u>. Credits will be given ONLY if the solution is obtained by using Laplace transform.

$$y'' + 4y = 1 + H(t - 5), y(0) = 1, y'(0) = 0,$$
(1)

where $H(\cdot)$ represents the Heaviside function.

2. (30 points) The Fourier series of a function f(x) defined on $x \in [-L, L]$ is given by

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1} a_n \cos(\frac{n\pi x}{L}) + b_n \sin(\frac{n\pi x}{L}).$$

Answer the following questions.

(a) (5 points) Consider function $f(x) = x^2$ on $x \in [-3, 3]$. This function has the Fourier series on [-3, 3] given by

$$3 + \frac{36}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(n\pi x/3). \tag{2}$$

Under which conditions, we can differentiate the series in Eq. (2) term by term to obtain the Fourier expansion of f'(x) on $\{-3,3\}$ (select all answers that are correct)?

- (a) f is continuous.
- (b) f' is piecewise continuous.
- (c) $f(x) \to 0$ as $x \to \infty$.
- (d) f(-3) = f(3).
- (e) $\int_{-\infty}^{\infty} |f(x)| dx < \infty$.

編號: 197

國立成功大學 106 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:工程數學

考試日期:0214,節次:3

第2頁,共3頁

(b) (10 points) The complex Fourier series of f(x) for $x \in [-3, 3]$ is

$$\sum_{n=-\infty}^{\infty} d_n e^{inw_0 x}.$$

where d_n can be obtained as

$$d_n = a \cdot e^{-in\pi} + b \cdot e^{in\pi}. \tag{3}$$

Derive the coefficients a and b in Eq. (3).

(c) (10 points) Find the Fourier cosine integral representation of g(x) defined as

$$g(\mathbf{x}) = \begin{cases} \mathbf{x}^2, & 0 \le \mathbf{x} \le 3\\ 0, & \text{otherwise.} \end{cases}$$
 (4)

To get full credits, the Fourier integral cosine coefficient A_w must be arranged in the form of

$$a \cdot \sin(cw) + b\cos(cw)$$
.

(d) (5 points) State the convergence of the Fourier cosine integral obtained in Question 2(c) for $0 \le x < \infty$.

3. (20 points) Solve the following wave equations.

$$\frac{\partial^2 y}{\partial^2 t} = 4 \frac{\partial^2 y}{\partial x^2} + 2xt, \quad -\infty < x < \infty, t > 0$$
$$y(x, 0) = \sin(x), \frac{\partial y(x, 0)}{\partial t} = 0, \quad -\infty < x < \infty.$$

編號: 197

國立成功大學 106 學年度碩士班招生考試試題

系 所:電腦與通信工程研究所

考試科目:工程數學

考試日期:0214, 節次:3

第3頁,共3頁

4. (15 points) Let $f(z) = \frac{2z}{z^2+1}$.

- (a) (10 points) Find a Laurent series of f(z) in an region $0 < |z z_0| < R$ about $z_0 = i$ which converges to f(z).
- (b) (5 points) Specify R.
- 5. (15 points) Use the residue theorem to evaluate the given inverse Laplace transform

$$F(s) = \frac{1}{s^3 + 8}.$$

Express your answer in terms of real-valued functions.