編號: 187、205

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機工程學系,電子袋資訊學院一微電、奈米斯特尼

考試科目:電子學

考試日期:0213,節次:1

第1頁,共4頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. As shown in Fig. 1, the op amp has V_{OS} =4 mV and the output saturation voltages of ± 12 V. Consider a Miller integrator with a time constant of 1 ms and R=20 k Ω
 - (a) Assume that, when the power supply is turned on, the capacitor voltage is zero, how long does it take for the amplifier to saturate (neglected R_F)? (4%)
 - (b) Select the largest possible value for a feedback resistor R_F so that at least ± 10 V of output signal swing remains available. (4%)
 - (c) What is the corner frequency of the resulting single-time constant (STC) network? (4%)

- 2. The op amp in the precision rectifier circuit of Fig. 2 (a) is ideal with output saturation levels of ± 13 V. Assume that when conducting the diode exhibits a constant voltage drop of 0.7 V.
 - (a) $V_1 = +3V$, find V_0 and V_A ? (4%)
 - (b) $V_i=-1V$, find V_O and V_A ? (4%)
 - (c) Find the average output voltage obtained when V_1 is a symmetrical square wave of 1-kHz frequency, 5-V amplitude, and zero average as shown in Fig. 2(b) (4%)

編號: 187,205

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機工程學系、電大裝資訊學院一件效電、奈米聯起

考試科目:電子學

考試日期:0213,節次:1

第2頁,共4頁

- 3. As shown in Fig. 3, an IC CG amplifier is fed from a signal source with $R_{sig}=r_o/2$, where r_o is the MOSFET output resistance. It has a current-source load with an output resistance equal to r_o . The MOSFET is operated at $I_D=100~\mu A$ and has $g_m=1.5~mA/V$, $V_A=10~V$, $C_{gs}=0.2~pF$, $C_{gd}=15~fF$, $C_{db}=20~fF$, and $C_L=30~fF$ (neglected body effect).
 - (a) Determine the input resistance, Rin (4%)
 - (b) Find the output resistance, Rout (4%)
 - (c) Find the midband gain, A= Vo/Vsig (4%)
 - (d) Find the upper 3-dB frequency, f_H, using the method of open-circuit time constant (4%)

- 4. Considering the multi-stage amplifier with feedback as shown in Fig. 4, if all three MOSFETs are biased to operate at $g_m=4$ mA/V. You may neglect their r_0 's (channel-length modulation effect)
 - (a) Select a value for R_F that results in a closed-loop gain that is ideally 10 V/V (3%)
 - (b) Determine the loop gain, A β (4%), and hence the value of closed-loop gain, A $_f$ (3%)

Fig. 4

編號: 187,205

國立成功大學106學年度碩士班招生考試試題

系 所:電機工程學系、電機資訊學院一從電子業業報報

考試科目:電子學

考試日期:0213,節次:1

第3頁,共4頁

- 5. An internally compensated op amplifier has a dc open-loop gain of 10⁶ V/V and an ac open-loop gain of 40 dB at 10 kHz. Please estimate its 3-dB frequency (3%) and its gain-bandwidth product (3%).
- 6. An op amplifier having 106 dB gain at dc and a single-pole frequency response with unity-gain frequency f_t = 2MHz is used to design a non-inverting amplifier with nominal dc gain of 100. Please find the 3-dB frequency of the resulting amplifier. (5%)
- 7. For the circuit shown in Fig. 5, assuming that the op amplifier saturates at ±12V and the diodes have a constant 0.7V drop when conducting.
 - (a) Sketch and label the v₀-v₁ transfer characteristic. (6%)
 - (b) What is the maximum diode current? (3%)

Fig. 5

- 8. For the output stage circuit shown in Fig. 6, V_{CC} =15V, V_{CEsat} =0.2V, V_{BE} =0.7V (constant), and β is very high.
 - (a) Find the value of R that will establish a bias current sufficiently large to allow the largest possible output signal swing for R_L = 1 k Ω . (4%)
 - (b) Determine the resulting output signal range (2%) and the minimum/maximum current for Q_1 (2%).
 - (c) If the output voltage is an 8V-peak sinusoid, find (1) the power delivered to the load (2%); (2) the average power drawn from the supplies (2%); (3) the power-conversion efficiency (ignore the loss in Q₃ and R). (2%).

Fig. 6

編號: 187、205

國立成功大學 106 學年度碩士班招生考試試題

系 所:電機工程學系、電機資訊學院一件效電、奈米耶維起

考試科目:電子學

考試日期:0213,節次:1

第4頁,共4頁

- 9. For a second-order bandpass filter with center frequency of 10⁵ rad/sec, a center-frequency gain of 10, and a 3-dB bandwidth of 10³ rad/sec. Please derive and write down its s-domain transfer function. (6%)
- 10. Consider the circuit of Fig. 7. Break the loop at node X and find the resulting loop gain.
 - (a) Find the possible frequency of oscillation. (5%)
 - (b) Find the minimum value of R_f/R required for oscillation. (5%)

