@ o, BITTIRTARE 106 B4R RS S
% Fr: B TIEEZ

EHERLE - Bhiss SR EHA C 0213 0 8% ;2
Ei1H da4Hg '

WOBEFER ARERTEANEE - FREEEOEE REREE LEEE et

ﬁ} o

—~ WEE: (2043, ALY, 52555)
1. Which of the following statement(s) is (are) true?
(A) Ifgi(n) €Q (fi(n)) and g2(n) e (f(n)) then gi(n) +g(n) € (max{fi(n)+ f2(n)})
(B) Slogn®+ loglogn?is ®(logn?)
(C) fln) e B(g(n)) if and only if f(n) €0(g(n)) and f{n) eQ(g(n))
(D) f(n) € O(g(m)) and h(n) eQ(g(n)) imply fn) eO(h(n))

2. Which of the following statement(s) is {are) true?
(A) A binary tree is a special case of a tree.
(B) It is still legal to have a tree without any node.
(C) Given a root n of a tree T} whose left subtree and right subtree are respectively S; and Sz, we generate a
new tree T2 by exchanging S, and S;. Then, T, is equal to T>.
(D)The maximum number of nodes in a binary tree is 2% if the depth of a tree is k.

3. Which of the following statement(s) is (are) true?
(A) A depth-first algorithm is implemented by queue.
(B) The time complexity of the Prime algorithm is O(E logV) if it is implemented by an array.
(C) There exists no back edge in a spanning tree generated by a breath-first algorithm.
(D) A max heap can be implemented by a complete binary tree.

4. Which of the following statement(s) is (are) true?
(A) The insertion sort is a stable algorithm.
(B) The quick sort is the fastest sorting algorithm.
(C) The merge sort and quick sort both apply the divide-and-conquer strategy, but the quick sort is the in-
place algorithm while the merge sort is not.
(D) The heap sort is a comparison based sorting algorithm.

M5 181 BNLARZIARE 106 SRR T IR A S
RO ERIESS

FRE B HSAEHA 0213 0 B30 2
F2H HE4H

=~ FEEEE: (60 5))

1. (20 pts} Give a sequence of numbers 6, 2, 4, 7, 3, 9, 5 recorded by an array (the first index of the array is zero).
a. (6 pts) Sort the numbers in the increasing order by the quick sort algorithm and show the status of the array each
time after you change the location of pivot (take the last digit as pivot). Each time the array [0...n-1] is divided into

two subarrays whose indices are [0 ... 2221 and [iwid RS n-1], respectively, and the subarray with small index
2 2

is handled first. _

b. (4 pts) Show the condition when the algorithm has to take the longest time according to the above numbers.
What is the time complexity if there exist n numbers and why?

C. {5 pts) Show the status of the heap in an array before you want to sort the number in the decreasing order.

d. (5 pts) Based on the result of b, you delete the root and axchange the root with the number in the array with the

largest index. Please show the status of the array after you legal the new heap.

2. (20 pts) Biconnected Components

a. (3 pts) Show the depih-first search tree. |

b. (7 pts) List the dfs numbers and low values of all nodes in a table. , o‘o
(assume you start with node 1 and the search always start from a node with small number).

¢. (4 pts) Show all articulation points and explain why they are the articulation points. e °

d. (3 pts) Give the definition of the back edge and show backward edges if the figure has. .

. (3 pts) Give the definition of the forward edge and show forward edges if the figure has, G 9

3. (20 pts) Threaded binary tree.

a. (2 pts) How many threads are there in a threaded binary tree which contains n nodes?

b. (5 pts) Obtain the binary tree whose preorder traversal is ABCEDF and inorder traversal is CBDEAF.
(3 pts) Show the components in the data structure of a node in a thread binary tree and explain their
purposes.

d. (5 pts) Show the post-threaded binary tree corresponding to the binary tree generated by b. Make sure
that the tree does not contain any dangling thread.

¢. (5 pts) Show the data after calling the function OPT if current node points to the node B in the tree.

T* Threadinorderlterator:: OPT() {
ThreadNode <T> *temp = currentNode->rightChild,
if (lcurrentNode->rightThread)
while (!temp->lefiThread) temp=temp->lefiChild;
currentNode = temp;

if (currentNode == roof) return 0;
else return ¤tNode->data;

R9E 0 181

% B EBEIEEZLR
e - BErldhE
B3IE HKaH

B B AR 106 BB R T PEE A EERE

ZHl AN ¢ 0213 B R ¢ 2

=~ERE Q05 - BU/NE 297
The following shows a C++ implementation of a forward iterator for the class Chain, and Chainlterator is a public

member of Chain.

class Chainlterator {
public:
{ increment
Chainlterator& operator -+H} § // preincrement
current = current->>link; // increment iterator
return *this; } // reference returmn
Chainiterator operator +Hint} { / postincrement
Chainlterator old = *this; // hold current state of object
cutrent = current->link; // increment iterator
return old; 3 // value refurn; return unincremented/saved object
private:

ChainNode *current;

b
(> (2'pts) What is the purpose of the iterator used by a container in C++?
(=7 (10 pts) Assume that we use the definition of class ChainNode and the chain nodes shown in the following figure,

where first is a ChainNode pointer pointing to the first node of the chain. Please implement the following

predecrement and postdecrement function for Chainlterator.
class ChainNode {

private:
int data;

ChainNode *link;

b

Chainlterator& operator —() { //predecrement
if (current =first} { __A .}
ChainNode *it = first;
while(__B) {

C

D

return __*this;

Chainlterator operator -~(int) { /postdecrement

if (current ==firsf){_ A 3}

ChainNode *it = first,
Chainlterator old ;
while(__B) {

C

E

D

return old;

@ 181 BIIZRRITAER 106 B4E AR - IR A B

2 ERIEEZ

RS E - ERAE 5 EHE © 0213 - 8% ¢ 2
FaH H4H

<z> (4 pts} If we change the definition of ChainNode and the way of nodes connecting in the chain as follows, please

implement the corresponding predécrement and postdecrement function for Chainlterator.

class ChainNode {
first

private:

int data;

5 EaEsy g

ChainNode *left, *right;

h
Chainterator& operator —() { //predecrement ChainHlterator operator --(int) { /postdecrement
F N Chainlterator old,
return *this;; G
1 F
return old;
}

4y (4 pts) The iterator supports the dereference operator and the inequality operator. Please complete the codes in the

following.

/f dereferencing operators

T& operator *() const {return H 3}

bool operator'=(const Chainlterator right) const

{return I H

