國立成功大學 106 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:控制系統

考試日期:0213,節次:2

第1頁,共1頁

178

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Find the transfer function $G(s) = I_2(s)/V_i(s)$ for the network shown in Fig. 1 using nodal analysis. (25%)

2. Consider a closed-loop system described in Fig. 2, where C(s) = K and $G(s) = \frac{(s+4)^2}{s^2(s-5)}$. Please apply

Nyquist plot design method to find the range of K such that the closed-loop system is stable. (25%)

3. Solve for the state transition matrix $\Phi(t)$, the state vector $\mathbf{x}(t)$, and the output y(t) of the following system using Laplace transform methods: (25%)

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 2 \\ -2 & -5 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-2t}; \quad y(t) = \begin{bmatrix} 4 & 2 \end{bmatrix} \mathbf{x}(t); \quad \mathbf{x}(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

4. **Definition**: Consider $\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t)$ where $\mathbf{A}(t)$ is $n \times n$ with continuous functions of t as its entries. An $n \times n$ matrix $\mathbf{Q}(t)$ is said to be a fundamental matrix of $\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t)$ if and only if the n columns of $\mathbf{Q}(t)$ are linearly independent. Suppose $\mathbf{\Phi}(t,t_0) \equiv \mathbf{Q}(t)\mathbf{Q}^{-1}(t_0)$, then $\mathbf{\Phi}(t,t_0)$ is called the state transition matrix of $\mathbf{x}(t) = \mathbf{A}(t)\mathbf{x}(t)$. Please prove that

(a)
$$\Phi(t_0, t_0)$$
 is an identity matrix. (5%)

(b)
$$\Phi^{-1}(t, t_0) = \Phi(t_0, t)$$
 (5%)

(c)
$$\Phi(t, t_0) = \Phi(t, t_1)\Phi(t_1, t_0)$$
 (5%)

(d) $\Phi(t, t_0)$ is uniquely determined by A(t) and is independent of the chosen fundamental matrix. (10%)