題號: 58

國立臺灣大學 106 學年度碩士班招生考試試題

科目: 普通物理學

共 1 頁之第 1 頁

 E_D

進號:58

Fig. 1

Fig. 2

Fig. 3

Fig. 4

每一空格 5 分,僅需將答案寫出,不須寫步驟。

- What is the change in entropy of 500 g of water as its temperature increases from 10 °C to 25 °C? (1) J/K? (The specific heat of water is 4.19 kJ/kg·K.)
- 2. The plates of a parallel-plate capacity carry surface charge density σ C/m². A dielectric slab of thickness t and dielectric Constant x is inserted into the parallel plate capacitor with plates of area A, separated by distance d, as shown in Fig. 1 Assume that the battery is disconnected before the What is the total potential difference between the plates? (2) V. is the capacitance C_1 between the plates? (3) nF. If the dielectric slab is replaced by a metal sheet with the thickness t, compared to the capacitance C_1 , how is the capacitance affected? (increase? decrease? or keep constant?) (4) (Take d = 1 cm, t = 0.3 cm, $\sigma = 2$ nC/m², $\kappa = 5$, A = 0.340 cm², ε_0 =8.85×10⁻¹² F/m.)

- 7. A small ball of mass m starts from rest at the top of a solid sphere of radius r and solids down its frictionless surface (see Fig. 3). At what angle θ will the small ball leave the sphere? (9), and calculate the speed v of small ball when it leaves the sphere. (10)
- (a) Determine the coordinate for the center of mass (CM) of a uniform cone of height h and radius R. as shown in Fig. 4: (11) ... (b) If this cone is not uniform with a z-dependent density $\rho =$ $\rho_0 \cdot z$, determine its CM. (12)
- 9. A guitar player tunes the fundamental frequency of a guitar string to 440 Hz. What will be the fundamental frequency if she then increases the tension in the string by 15%? (13) (Hz). will it be if, instead, she decreases the length along which the string oscillates by sliding her finger from the tuning key one-fourth of the way down the string toward the bridge at the lower end? (14) (Hz)
- 10. Two masses, $m_1 = 1.0$ kg and $m_2 = 2.0$ kg, are connected by a rope that hangs over a pulley. The pulley is a uniform cylinder of radius 0.1 m and mass 0.5 kg. Initially m_1 is on the ground and m_2 rests 2.5 m above the ground (see Fig. 5). If the system is released, taking the gravitational acceleration $g = 10 \text{ m/s}^2$, what is the acceleration of m_2 just before it strikes the ground? (15). What is the tension T_2 before m_2 strikes the ground? (16)

Fig. 5

(=)毎題 10 分,請寫出步驟。

- (1) Two moles of an ideal diatomic gas ($\gamma = \frac{7}{5}$) operate in the cycle of Fig. 6, where $T_a = 400$ K, $T_c =$ 200 K, and $P_c = 100$ kPa. Find: (a) $V_b = _m m^3$? (5%) and (b) the work done from a to b? $W_{a\to b} = ___ J? (5\%)$
- (2) If the cube in Fig. 7 has mass M = 3.0 kg and edge lengths d = 6.00 cm, and is mounted on an axle through its one edge at bottom. A spring (k = 1200 N/m) connects the cube's upper corner to a rigid wall. Initially the spring is at its rest length. If the cube is rotated 3° and released, (a) what is the period of the resulting simple harmonic motion (SHM)? (5%) (b) What is the maximum magnitude of angular velocity during the SHM? (5%) [Hint: the rotational inertial Icom, being about a rotation axis that passes through the center of the cube, is $Md^2/6$.]

試題隨卷繳回

