題號: 62 科日: 物化分析

科目:物化分析

避號: 82 共 4 頁之第 1 頁

節次: 7

※ 注意:請於試卷上「非選擇題作答區」內依序作答,並應註明作答之部份及其題號。

Section A. (38%)

(Please write down your answer in detail)

1. The sulfate ion concentration in natural water can be determined by measuring the turbidity that results when an excess of BaCl₂ is added to a measured quantity of the sample. A turbidimeter, the instrument used for this analysis, was calibrated with a series of standard Na₂SO₄ solutions. The following data were obtained in the calibration for sulfate concentrations, C_x:

C_x , mg SO_4^2 -/L	Turbidimeter Reading, R
0.00	0.06
5.00	1.33
10.0	2.51
15.0	4.02
20.0	5.31

(a) What are the two assumption of the least-squares method? (4%)

(b) Compute the least-squares slope and intercept for the best straight line among the points. (4%)

(c) Students found that the unknown concentration of samples were measured with less uncertainty near 10 mg SO₄²-/L from the constructed calibration curve than those made at the extremes. Explain the reason from the following equation: (3%)

$$s_{\rm c} = \frac{s_{\rm r}}{m} \sqrt{\frac{1}{M} + \frac{1}{N} + \frac{(\bar{y}_{\rm c} - \bar{y})^2}{m^2 S_{\rm re}}}$$

- (d) Given that s_m and s_b are 3.321×10^{-5} and 1.992×10^{-5} respectively, find the detection limit for the k value corresponding to 98.3% confidence level? (2%) What is the probability of type I error occurring in a two-tail mode? (2%)
- 2. Please plot the titration curve for the titration of 10 mL 0.1 M H_3PO_4 with 0.1 M NaOH. Denote the location of the first and second equivalence points in terms of pH value and the amount of NaOH required. In addition, calculate the α_1 value at pH = 6.0. (10%)

H₃PO₄
$$K_{a1} = 7.11 \times 10^{-3}$$
 $K_{a2} = 6.31 \times 10^{-8}$ $K_{a3} = 4.50 \times 10^{-13}$

$$\alpha_0 = \frac{[H_3O^+]^3}{[H_3O^+]^3 + K_{a1}[H_3O^+]^2 + K_{a1}K_{a2}[H_3O^+] + K_{a1}K_{a2}K_{a3}}$$

- 3. One CaSO₄ particle exists in the 10 μM Ca(NO₃)₂ aqueous solution. Describe the dielectrical double layer formation mechanism in detail. (5%)
- 4. Define the following electrochemisty terms as clear as possible. (8%)
 - (a) Concentration polarization
 - (b) Faradaic and nonfaradaic current
 - (c) Polarography
 - (d) Junction potential

題號:62

節次: 7

Section B.(12%)

- 5. Several analytical techniques and figures or equations are shown below. Please assign the appropriate items to the corresponding techniques. (Tick all that apply)
 - 4-1. Capillary electrophoresis (2%, no partial credit.)
 - 4-2. Fluorescence spectroscopy (2%, no partial credit.)
 - 4-3. Liquid chromatography (2%, no partial credit.)
 - 4-4. Gas chromatography (2%, no partial credit.)
 - 4-5. Mass spectrometry (2%, no partial credit.)
 - 4-6. Voltammetry (2%, no partial credit.)

國立臺灣大學 106 學年度碩士班招生考試試題

題號: 62 科目: 物化分析

節次: 7

題號:62

共 4 頁之第 3 頁

見背面

題號: 62 國立臺灣大學 106 學

國立臺灣大學 106 學年度碩士班招生考試試題

科目:物化分析

節次: 7

超流・ 02 共 4 頁之第 4 頁

Section C. (50%)

1. (8 pts) The mechanism of NO₂Cl decomposition is suggested as follows:

$$NO_{2}Cl \xrightarrow{k_{1}} NO_{2} + Cl$$

$$NO_{2}Cl + Cl \xrightarrow{k_{2}} NO_{2} + Cl_{2}$$

- (1A). Use a steady-state approximation to express the Cl2 production rate in terms of NO2Cl and NO2.
- (1B). Under what condition, the Cl₂ production rate is second-order to NO₂Cl.
- 2. (18 pts) The initiate state of 1 mole of an ideal gas is 3.0 L at 300 K.
- (2A). The system is now expanded from 3.0 L to 6.0 L isothermally and reversibly (step 1). Calculate q, w, ΔS , and ΔG of this process.
- (2B). The expanded state is then carried out with three additional, sequential steps to return to its initial state: constant volume heating, adiabatic compression, and constant pressure compression. Qualitatively sketch the H (y-axis) vs. S (x-axis) curve of all 4 steps and label each step.
- (2C). How to verify if a thermodynamic parameter is a state function.
- 3. (18 pts) The absorption spectrum of a conjugated molecule of length L can be approximated as an electron trapped in a one-dimensional 1D "particle in a box", where V(x) = 0 for 0 < x < L, but $V(x) = \infty$ otherwise. It has a normalized solution of $\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$, with $E_n = \frac{n^2 h^2}{8mL^2}$, where n = 1, 2, 3...
- (3A). Given the dipole operator for the electron is $\hat{\mu} = e\hat{r}$, what are the selection rules for the electronic transitions in this model? Explain why.
- (3B). Assume the electron starts in the ground state of the 1D box potential, sketch the absorption spectrum of the molecule.
- (3C). Now, if in the middle of the 1D box, there exists a small, thin barrier with barrier height specified as drawn here. Sketch $\varphi_1(x)$ and $\varphi_2(x)$.

4. (6 pts) A three-state system consisting of N particles. The energy of the ground state is θ , and that of the first and second excited states are ε_{θ} and $(2\varepsilon_{\theta})$, with $\varepsilon_{0} > 0$. Determine the total energy E of this ensemble, starting from the molecular partition function q.