國立政治大學 106 學年度 碩士班 招生考試試題

第1頁,共2頁

考 試 科 目 基礎數學 系 所 別 統計學系 考 試 時 間 2 月 1.8 日(六) 第一節 リリン

Note. You need to show your work in your solutions for the following problems instead of giving final answers only.

1. (20 points) Suppose that

$$f(x) = \begin{cases} \mathbf{0} & \text{if } x = 0; \\ x^{-3} & \text{if } x < 1 \text{ and } x \neq 0; \\ -1 + x & \text{if } 1 \le x < 2; \\ xe^{-x^2} & \text{if } x \ge 2. \end{cases}$$

Find $\int_1^{\infty} f(x)dx$ and $\int_{-\infty}^{\infty} f(x)dx$.

2. (16 points) Find the following limits.

(a)
$$\lim_{x\to\infty} \left(1+\frac{2}{x}\right)^x$$
.

(b)
$$\lim_{x \to \infty} \frac{\int_x^{\infty} e^{-t^2} dt}{x e^{-x^2}}$$

(c)
$$\lim_{x \to \infty} \frac{x + \cos(x)}{x - \sin(x)}$$

(c)
$$\lim_{x \to \infty} \frac{1}{x - \sin(x)}$$

(d) $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \sin\left(\frac{2\pi k}{n}\right)$.

3. (14 points) Suppose that u is a differentiable function of x such that

$$u + x\cos(u) = 1$$

and u = 0 when x = 1. Let

when
$$x=1$$
. Let
$$f(x,y)=\int_0^x\int_y^{y+s}s(t-y)dtds+(u+y)^2-\frac{x}{2}$$

for $x, y \in (-\infty, \infty)$. Determine whether f has a local minimum or a local maximum at the point (1,0). Justify your answer.

4. (12 points) Suppose that a is a real number and $a \neq 0$. Let

$$A = \left(\begin{array}{ccc} 1 & a & 0 \\ a & 1 & a \\ 0 & a & 1 \end{array}\right) a,$$

- (a) Show that 1 is an eigenvalue of A.
- (b) Find an eigenvector of A associated with the eigenvalue 1.
- (c) Find all eigenvalues of A that are not equal to 1.

國立政治大學 106 學年度 碩士班 招生考試試題

第2頁,共2頁

考試科目基礎數學 系所別統計學系 考試時間 2月18日(六)第一節

5. (24 points) Suppose that n is a positive integer and let

 $V_n = \{p: p \text{ is a polynomial of real coefficients on } [0,1] \text{ of degree at most } n. \}.$

Then it is clear that V_n is a linear space, where the vector addition is the usual addition for polynomials and a vector multiplied by a scalar means a polynomial multiplied by a real constant. Let

$$W = \left\{ p \in V_n : \int_0^1 p(x) dx = 0 \right\}$$

and

$$W^* = \left\{ q \in V_n : \int_0^1 q(x)p(x)dx = 0 \text{ for every } p \in W \right\}.$$

- (a) Show that W and W^* are linear spaces
- (b) Find the dimension of W.
- (c) Find the dimension of W^* and give a set of basis for W^* .
- 6. (14 points) Suppose that A is a 3×3 matrix of the following form

$$\begin{pmatrix} 1 & B \\ O & D^{-1} \end{pmatrix}$$
,

where $B = \begin{pmatrix} 2 & 3 \end{pmatrix}$ is a 1×2 matrix, O is a 2×1 matrix of zeros, and D^{-1} is the inverse matrix of a 2×2 matrix D. Express the inverse matrix of A in terms of D.

一、作答於試題上者,不予計分。