國立聯合大學 100 學年度碩士班考試招生

電機工程研究所 入學考試試題

科目: 電子學

第_1_頁共_3_頁

- 1. (30%) Please indicate whether each of the following statements is always true or sometimes false. Justify your answer by giving a logical argument, otherwise the score will not be counted. (3 points for each)
- (a) An electric field pulls electrons and holes current in the same direction.
- (b) When the Zener diode worked in the reverse-bias mode the voltage across it is always constant regardless the current flowing through it.
- (c) If one gets the following input/output voltage signals from the CE amplifier shown below, the output signal shows that the circuit is working in an unsuitable operating point. One can reduce R_L or V_{cc} to correct this situation.

- (d) For the above CE amplifier, if we increase the value of R_B , the operating point will be adjusted, and the distorted output signal could be improved.
- (e) An ideal current amplifier is usually considered to have infinite input impedance and zero output impedance.
- (f) Since BJT is a nonlinear device, the superposition theorem can not be applied in its analysis. Therefore performing the DC and AC analyses separately of a BJT amplifier is not reasonable.
- (g) The coupling capacitor is not necessary in the input and output ports of a differential amplifier.
- (h) A negative feedback amplifier can reduce the closed-loop gain but increase the gain sensitivity.
- (i) A negative feedback amplifier can reduce the closed-loop gain but increase the bandwidth of the system.
- (j) In the analysis of a Shunt-Series feedback amplifier, the feedback network has to be represented with inverse hybrid g-parameters.

國立聯合大學 100 學年度碩士班考試招生

電機工程研究所 入學考試試題

科目: 電子學

第 2 頁共_3_頁

- 2. (20%) For the following NMOS common-source
- amplifier, evaluate the following:
- (a) The g_m . (Assuming $\frac{\mu_n C_{ox}W}{2L} = 1^{mA}/_{V^2}, V_{pp} = 1V$.) (5 points)
- (b) The voltage gain $A_v = \frac{v_o}{v_s}$.(Assuming $R_L = 5k\Omega$.) (5 points)
- (c) The corner frequencies $\,\omega_{C1}\,$ and $\,\omega_{C2}\,$. (Assuming $C_{C1}=2\,\mu\!F,C_{C2}=2\,\mu\!F\,$.) (6 points)

- (d) The lower corner frequency ω_L . (2 points)
- (e) If $v_s(t) = 0.001 \sin(\omega_L t)$ sketch the $v_o(t)$ signal (2 points)
- 3. (25%) For the following two stages amplifier, evaluate the following:
 - (a) The $\,g_{\scriptscriptstyle m}, r_{\scriptscriptstyle \pi}, r_{\scriptscriptstyle e}\,$ for $\,Q_{\scriptscriptstyle 1}\,$ and $\,Q_{\scriptscriptstyle 2}\,$. (6 points)
 - (b) The A_{vo1} , A_{is1} , R_{i1} , R_{o1} for the 1st stage amplifier. (8 points)
 - (c) The A_{vo2} , A_{is2} , R_{i2} , R_{o2} for the 2nd stage amplifier. (8 points)
 - (d) The overall voltage gain $~A_{v}$. (Assuming $~R_{s}=1k\Omega, R_{L}=10k\Omega$) (3 points)

國立聯合大學 100 學年度碩士班考試招生

電機工程研究所 入學考試試題

科目: 電子學

第 3 頁共 3 頁

- 4. (10%) Consider the following ideal operational amplifier circuit.
 - (a) Find the output function $V_o = f(V_1, V_2)$.(5 points)
 - (b) What is the strategy that can change the circuit into a differential amplifier. (5 points)

- 5. (15%) Consider the following ideal operational amplifier circuit with $C_1 = 1mF$, $C_2 = 1mF$.
 - (a) Find the transfer function $H(s) = \frac{V_o(s)}{V_i(s)}$. (10 points)
 - (b) Sketch the Bode diagram of this system. (5 points)

