	-		Т													
考	試	科	目	基礎數學	所	别	統計學系	4141	考試時間	2	月 26	日(日) 第	第一.	節

- 1. (12 points) Let A be a nonsingular $n \times n$ matrix. Which of the following statements are correct? If a statement is not correct, say how to correct it.
 - (a) There exists an $n \times n$ matrix B such that $AB = I_n$, where I_n is the identity matrix.
 - (b) For any vector $b \in \mathbb{R}^n$, the linear system Ax = b has a unique solution.
 - (c) A has rank 0.
 - (d) The dimension of the column space of A is less than n.
- 2. (9 points) Let A be an $m \times n$ matrix with rank A = n. Which of the following statements are correct? If a statement is not correct, say how to correct it.
 - (a) $A^T A$ is nonsingular.
 - (b) $A^T A$ is positive definite.
 - (c) Let b be any vector in \mathbb{R}^n . The linear system Ax = b may have multiple solutions.
- 3. (20 points) Let A and B be $n \times n$ matrices such that $AB = I_n$. Suppose that A has n eigenvalues $\lambda_1, ..., \lambda_n$. Answer the following questions.
 - (a) Write down the characteristic polynomial of A.
 - (b) Find the eigenvalues of B.
 - (c) Find the eigenvalues of A^T , the transpose of A.
 - (d) Express the trace of A in terms of λ_i .
- 4. (9 points) Let

$$A = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right)$$

- (a) (3 points) Find the eigenvalues of A.
- (b) (6 points) Diagonalize the matrix A.

考	試 科	目	基礎數學	學	所 另	統計學多	4141	考言	試 時	閆	2 月	26	日(日)	第一	節
5.																
	(A) Eva	ıluate	$\int_{-\infty}^{\infty} e^{-x^2} dx$	dx.											(5%))
	(B) Eva	luate	$\int_{1}^{\sqrt{3}} \operatorname{arct}_{i}$	$\operatorname{an}\left(\frac{1}{x}\right)dx$											(5%))
6.																
ı	Suppose	$e f\left(\frac{1}{2}\right)$	$\left(\frac{x^2-1}{x^2+1}\right) =$	x, x > 0	. Find	f'(0).									(10%)
7.	,	I	c0				7								(100/)	
	Find $\frac{c}{d}$	-cos.	$x\int_{\tan x}^{0} \tan x$	tdt		E	<u> </u>))					(10%)) *
8.	(A) Ev	aluate	$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)$	$\left(\frac{0.7}{n^2}\right)^{5n}$.		П	П		5						(5%)	
	(B) Ev	aluate	$\lim_{n\to\infty}\frac{1}{n}\bigg($	$\sqrt{\frac{1}{n}} + \sqrt{\frac{3}{n}}$	$\frac{1}{2} + \cdots + \sqrt{2}$	$\left[\frac{n}{n}\right]$.								×	(5%)	
9.	Test the	e serie	es $\sum_{n=0}^{\infty}$	$(-1)^n \frac{(x-1)^n}{2}$	$\frac{-3)^n}{3n+1}$ for	convergence	e or divergen	ce.	In a	dditi	on,	fino	d the	inte	rval of	
			if the ser												(10%)	