國立東華大學招生考試試題第一頁,共2頁

招	生 學	4	度	105 招 生 類 別 碩士班						
系	所	班	別	應用數學系 統計碩士班						
科	目	名	稱	機率與統計						
注	意	事	項	本考科禁止使用掌上型計算機;含機率論與統計學						

- 1. True or False? In the following questions, decide whether the following statement is true or false. Justify/Explain your answer. Give an example or explain briefly if the answer is "True", otherwise, give a counterexample.
 - (a) (5 points) If X is a continuous random variable with the probability density function $f(x), -\infty < x < \infty$, then $P(X = b) = f(b), \forall b$.
 - (b) (5 points) If A and B are two disjoint events and P(B) > 0, then P(A|B) must be 0.
 - (c) (5 points) If the random variable X has a cumulative distribution function F, then $F(b+\frac{1}{n}) \to F(b)$ as $n \to \infty$ for any real value b.
 - (d) (7 points) If $X_1, X_2, ..., X_n \sim_{\text{iid}} B(1, p)$, then $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$ is an unbiased estimator for p.
 - (e) (8 points) If $X_1, X_2, ..., X_n \sim_{\text{iid}} N(0, \sigma^2)$, then $X_1^2 + X_2^2 + ... + X_n^2$ is a sufficient estimator for σ^2 .
- 2. $X_1, X_2, ..., X_n \sim_{\mbox{iid}} N(\mu, \sigma^2)$ where μ is unknown and σ^2 is known.
 - (a) (10 points) Please find the MLE (Maximum likelihood estimator) for μ and verify your answer.
 - (b) (10 points) Please find the UMVUE (Uniformly minimum-variance unbiased estimator) for μ and verify your answer.
- 3. (15 points) $X_1, X_2, ..., X_n \sim_{\text{iid}} B(1, p_0)$. Please find the UMP (uniformly most powerful) test of size α for testing $H_0: p = p_0$ v.s. $H_1: p = p_1$, where $0 < p_0 < p_1 < 1$.
- 4. (10 points) Suppose X follows the uniform random variable on (-1,1). Please find the probability density function of X^2 .

或	立	東	華	大	學	招	生	考	試	試	題	第_2_頁	,共2_頁
---	---	---	---	---	---	---	---	---	---	---	---	-------	-------

									*X	
招	生号	事 年	度	105	招	生	類	別	碩士班	
系	所	班	別	應用數學系 統計碩士班			565 PH VIII * 200 P			
科	目	名	稱	機率與統計						
注	意	事	項	本考科禁止使用掌上型計算機;含機率論與統計學						

- 5. Assume that Z is a standard normal random variable, and g(x) is a differentiable and bounded function on $-\infty < x < \infty$. Please show
 - (a) (10 points) E(g'(Z)) = E(Zg(Z)).
 - (b) (5 points) $E(Z^{n+1}) = nE(Z^{n-1})$.
- 6. (10 points) Please interpret the "Law of Large Numbers".