國立東華大學招生考試試題第1頁,共2頁 | 招 | 生鸟 | 是 年 | 度 | 105 | 招 | 生 | 類 | 別 | 碩士班 | |---|----|-----|---|--------------|---|---|---|---|-----| | 系 | 所 | 班 | 別 | 電機工程學系碩士班 | | | | | | | 科 | 目 | 名 | 稱 | 電子學 | | | | | | | 注 | 意 | 事 | 項 | 本考科可使用掌上型計算機 | | | | | | - 1. (10 \Re) Electrons are being steadily injected into a region of *p*-type silicon. In the steady state, the excess electron concentration profile shown in Fig. P1 is established in the *p*-type silicon region. If $N_A = 10^{16}$ cm⁻³, $n_i = 1.5 \times 10^{10}$ cm⁻³, and W = 5 µm, find the current density that will flow in the *x* direction. Hint: $D_n = 34$ cm²/s and $D_p = 12$ cm²/s. - 2. (10 分) Sketch the physical structure of a NMOS transistor. Indicate the source, drain, gate, oxide, body, and channel while the transistor is turned-on. - 3. (15 \Re) For the NMOS amplifier in Fig. P3, replace the transistor with its T equivalent circuit. Derive expressions for the voltage gains v_s/v_i and v_d/v_i . Hint: Neglect the Early effect. - 4. (15 \Re) For the emitter-follower circuit shown in Fig. P4, the BJT has $\beta = 100$. Assume $V_{BE} = 0.7$ V. Find (a) I_E , V_E , and V_B , (b) the input resistance R_{in} , and (c) the voltage gain v_o/v_{sig} . Fig. P3 ## 國立東華大學招生考試試題第2頁,共2頁 | 招 | 生号 | 早 年 | 度 | 105 | 招 | 生 | 類 | 別 | 碩士班 | |---|----|-----|---|--------------|----|---|---|---|-----| | 系 | 所 | 班 | 別 | 電機工程學系碩士班 | | | | | | | 科 | 目 | 名 | 稱 | 電子學 | | | | | 6 | | 注 | 意 | 事 | 項 | 本考科可使用掌上型計算機 | -1 | | | | | - 5. (20 \oiint) Estimate the Gm and voltage gain of the differential amplifier as shown in Fig. P5. Notice that $V_{DD}=3V$, $I_B=50\mu A$, $V_{t}=1V$, $(W/L)_{N1}=(W/L)_{N2}=100$ $(W/L)_{P1}=(W/L)_{P2}=200$, $\mu nCox=200\mu A/V^2$, $\mu pCox=100\mu A/V^2$, $V_{AN}=|V_{AP}|=20V$. - 6. (20 分) Two amplifiers are connected in series and with midband gain of A1 and A2 (Fig. P6). Their high-frequency dominant poles are ω1 and ω2, respectively. Answer the following questions. - (a) Find the high frequency response for H(s)=Vo(s)/Vi(s) of the system. - (b) If $\omega 1 \ll \omega 2$, please depict the Bode plot of H(s) for ω in the range of $0.1\omega 1 < \omega 2 < 10\omega 2$. - 7. $(10\, \text{f})$ Fig. P7 shows a feedback amplifier with three BJTs, Q1, Q2, Q3. Notice that currents on BJTs are I_{C1} =0.5mA, I_{C2} =1mA and I_{C3} =5mA. Also β is assumed 100 and r_o = ∞ . Please calculate the closed-loop voltage gain which is defined as A_f = V_o/V_i . Fig. P5 Differential amplifier with active load. Fig. P7 Feedback amplifier.