國立東華大學招生考試試題 第/頁,共之頁

招	生 导	多年	度	105	招	生	類	別	碩士班
系	所	班	別	電機工程學系碩士班					
科	目	名	稱	自動控制					
注	意	事	項	本考科可使用掌上型計算機					

1. (20%) Given the unity feedback system of Figure 1

Figure 1

(a) Determine whether the sytem is stable if

$$G(s) = \frac{240}{(s+1)(s+2)(s+5)(s+6)}$$

(b) If

$$G(s) = \frac{K(s+1)}{s^4(s+2)}$$

find the range of K for stability.

2. (20%) Given the unity feedback system of Figure 1, where

$$G(s) = \frac{K(s+1)}{s(s+2)(s+3)(s+5)}$$

do the following:

- (a) Sketch the root locus
- (b) Find the value of gain that will make the system marginally stable.
- (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at -0.5.
- 3. (20%) Consider the system shown in Figure 2.

Figure 2.

國立東華大學招生考試試題第一頁,共一頁

招	生 导	4	度	105	招	生	類	別	碩士班
系	所	班	別	電機工程學系碩士班					
科	目	名	稱	自動控制	1.65				
注	意	事	項	本考科可使用掌上型計算機	į.				2

- (a) Find the transfer function $\theta_o(s)/\theta_i(s)$.
- (b) Find the values of K_1 and K_f to meet the following specifications: velocity error constant, $K_v = 10$, and damping ratio, $\zeta = 0.5$.
- 4. (20%) A system is shown in the following Figure 3.

Figure 3

- (a) Let $K_1 = 1$. Determine the minimum value of K so that for the unit-step input the steady-state error, $e_{ss} \leq 0.25$, where E(s) = R(s) Y(s).
- (b) With the minimum value of K found in Part (a), select K_1 so that the steady-state error is zero.
- 5. (20%) A control system has two forward paths, as shown in Figure 4.

Figure 4.

- (a) Determine the overall transfer function T(s) = Y(s)/R(s).
- (b) Calculate the sensitivity $S_G^T = \frac{\partial T}{\partial G} \frac{G}{T}$.
- (c) Does the sensitivity depend on U(s) or M(s)?