國立中山大學100學年度碩士班招生考試試題

科目:電子學【海下海物所碩士班選考】

- 1. (15%) For the circuit shown in Fig. 1, find the transfer function T(s) = Vo(s) / Vi(s). Is this a high-pass or a low-pass network? What is its transmission at very high frequencies $(s \to \infty)$? What is the corner frequency ω_0 ? For $R_1 = 10 \text{ k}\Omega$, $R_2 = 40 \text{ k}\Omega$, and $C = 0.1 \mu\text{F}$, find f_0 . What is the value of $|T(j\omega_0)|$?
- 2. (15%) The circuit in Fig. 2 utilizes an ideal op amplifier. (a) Find I_1 , I_2 , I_3 and V_X . (5%) (b) If V_o is not to be lower than -13 V, find the maximum allowed value for R_L . (5%) (c) If R_L is varied in the range 100 Ω to 1 k Ω , what is the corresponding change in I_L and in V_O ? (5%)
- 3. (15%) The NMOS and PMOS transistors in the circuit of Fig. 3 are matched with k_n ' (W_n/L_n) = k_p ' (W_p/L_p) = 1 mA/V² and $V_{tn} = -V_{tp} = 1$ V. Assuming $\lambda = 0$ for both devices, find the drain currents i_{DN} and i_{DP} and the voltage v_o for $v_I = 0$ V, +2.5V, and -2.5V.
- 4. (20%) For the common-emitter amplifier shown in Fig. 4, let $V_{CC} = 9$ V, $R_1 = 27$ k Ω , $R_2 = 15$ k Ω , $R_E = 1.2$ k Ω , and $R_C = 2.2$ k Ω . The transistor has $\beta = 100$ and $V_A = 100$ V. Calculate the dc bias current I_E . If the amplifier operates between a source for which $R_{sig} = 10$ k Ω and a load of $R_L = 2$ k Ω , replace the transistor with its hybrid- π model, and find the values of R_{in} , the voltage gain v_o/v_{sig} , and the current gain i_o/i_i .
- 5. (20%) The op amplifier in the circuit of Fig. 5 has an open-loop gain of 10^5 and a single-pole rolloff with $\omega_{3dB} = 10$ rad/s. (a) Sketch a Bode plot for the loop gain. (6%) (b) Find the frequency at which $|A\beta| = 1$, and find the corresponding phase margin. (6%) (c) Find the closed-loop transfer function, including its zero and poles. Sketch a pole-zero plot. (8%)
- 6. (15%) A BJT is specified to have $T_{J \text{ max}} = 150$ °C and to be capable of dissipating maximum power as follows:

40 W at
$$T_C = 25$$
 °C
2 W at $T_A = 25$ °C

Above 25 °C, the maximum power dissipation is to be derated linearly with $\theta_{JC} = 3.12$ °C/W and $\theta_{JA} = 62.5$ °C/W. Find the following: (a) The maximum power that can be dissipated safely by this transistor when operated in free air at $T_A = 50$ °C. (5%) (b) The maximum power that can be dissipated safely by this transistor when operated at an ambient temperature of 50 °C, but with a heat sink for which $\theta_{CS} = 0.5$ °C/W and $\theta_{SA} = 4$ °C/W. Find the temperature of the case and of the heat sink. (5%) (c) The maximum power that can be dissipated safely if an infinite heat sink is used and $T_A = 50$ °C. (5%) (note: θ_{JA} , θ_{JC} , θ_{CS} , and θ_{SA} are the thermal resistances between junction and ambience, junction and transistor case, transistor case and heat sink, and heat sink and ambience, respectively.)

科目:電子學【海下海物所碩士班選考】

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5