國立中山大學100學年度碩士班招生考試試題

科目:數位電路【電機系碩士班丙組選考、庚組】

[Problem 1] Please use one 4-bit adder, one 2-bit adder, and a few logic gates (AND, OR, or NOT) to implement a one-digit BCD adder with one carry-in bit and one carry-out bit. Please note that the details of the adders are no need to show. (20%)

[Problem 2] In addition to the BCD code, 2-4-2-1 code listed below is also a useful coding to represent decimal digits in self complementing manner. Please design a function F to check if the decimal input encoded by 2-4-2-1 code can be exactly divided by three. In other words, F = 1 if and only if the reminder of the division by 3 is zero. Make the truth table of this function and design the two-level NOR-NOR network with minimum number of logic gates and literals. Note that the input code words (a, b, c, d) and their complements can be used directly as fan-in in the logic circuit. (15%)

Table 1		
Decimal	8-4-2-1	2-4-2-1
digit	Code (BCD)	Code
0	0000	0000
1	0001	0001
, 2	0010	0010
3	0011	0011
4	0100	0100
5	0101	1011
6	0110	1100
7	0111	1101
8	1000	1110
9	1001	1111

[Problem 3] The sequential circuit in figure 1 has one input signal X that is synchronized with the clock and one output signal Z.

- (a) Complete the state table. (6%)
- (b) It is known that this circuit is a sequence detector and is initialized to AB = 00 when powered up. What sequence(s) does it detect? (9%)

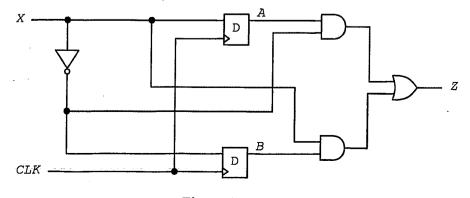
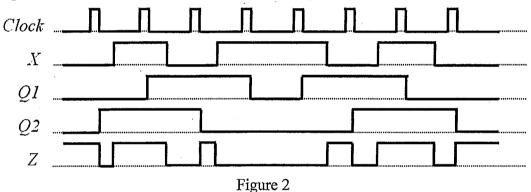


Figure 1

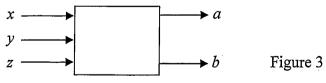
國立中山大學100學年度碩士班招生考試試題

科目:數位電路【電機系碩士班丙組選考、庚組】

[Problem 4] A Moore sequential network has one input and one output. When the input sequence 101 occurs, the output becomes 1 and remains 1 until the sequence 101 occurs again, in which case the output returns to 0. The output then remains 0 until 101 occurs a third time, and so forth. For example, the input sequence


$$X = 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1$$

has the output


$$Y = 000111001110000$$

Derive the state diagram with a minimum number of states. Notice that you have to verify that the number of state in your design has been minimized. (15%)

[Problem 5] A timing chart as below is recorded on a Mealy machine with one input X, one output Z, and two JK flip-flops. Construct the state table and draw the sequential circuit. (15%)

[Problem 6] A switching network has three inputs and two outputs, a and b, which represent the first and second bits of a binary number (N) respectively. Here N equals the number of inputs which are 0. For example, if x = 1, y = 0, and z = 0, then a = 1, b = 0. Please implement this network with two 4-to-1 multiplexers. (20%)

