科目: 半導體概論【電機系碩士班甲組】

- 1. The lattice constant of Ge is 5.65×10^{-8} cm for a diamond crystal structure. Calculate
 - (a) the distance from the center of one Ge atom to the center of its nearest neighbor. (10%)
 - (b) the number density of Ge atoms on <110> plane (# per cm^2) (10%)
- 2. An Au-n-GaAs Schottky Contact is at T=300K° with N_d =2× 10¹⁶ cm⁻³ (ϕ_m =5.1 Volt, χ =4.07 Volt, N_c =4.7× 10¹⁷ cm⁻³ , ϵ = 13.1 ϵ_o , ϵ_o = 8.85×10⁻¹⁴ F/cm). Calculate
 - (a) the depletion region width for a revrese bias voltage of 0.5V. (10%)
 - (b) the maximum electric filed in the above condition .(10%)
- 3. Consider the p-n-p bipolar junction transistor with base width W_b . The base doping concentration is N_d and the base hole diffusion coefficient is D_p . The emitter doping concentration is N_a , the emitter electron diffusion coefficient is D_n , and the emitter width is W_e which is much smaller than the electron diffusion length in the emitter. Derive the expression of the emitter injection efficiency γ . (20%)
- 4. A MOS transistor is fabricated on a p-type silicon substrate with $N_a=3\times 10^{15}~\rm cm^{-3}$. The oxide thickness is $t_{ox}=600\times 10^{-8}~\rm cm$ and the equivalent fixed oxide charge is $Q'_{SS}=1.5\times 10^{11}~\rm cm^{-2}$. Calculate the threshold voltage when the source/bulk bias voltage V_{SB} is equal to 0.6 V for an n⁺-polysilicon gate. (Si: $n_i=1.5\times 10^{10}cm^{-3}$, $\epsilon_{Si}=11.8$ ϵ_o , $\epsilon_{SiO_2}=3.9$ ϵ_o , $\epsilon_o=8.85\times 10^{-14}~F/cm$, $E_g=1.12 {\rm eV}$. Note: kT/q = 0.0259 V,q = 1.6 × $10^{-19}C$) (20%)
- 5. A direct semiconductor has the recombination rate $R=\alpha$ (pn- n_i^2) where $\alpha = 1 \times 10^{-8}$ cm³/s and $n_i = 10^{10}$ cm⁻³. The semiconductor is doped with $N_d = 2 \times 10^{15}$ cm⁻³. The sample is uniformly exposed to a steady optical generation rate of $g_{op} = 1 \times 10^{22}$ EHP/cm³-s. For this excitation, calculate the electron concentration n. (20%)