科目:分子生物學【生科系碩士班甲組選考、乙組選考】

- I. 選擇題:請自下列第 1~20 題各選出一正確答案;第 1~15 題,每題 2 分;第 16~20 題,每題 3 分。
- 1. Histones are the most abundant proteins in chromatin. Which two histones are among the most conserved of all known proteins?
 - (A) H1 and H2A
- (B) H2A and H2B
- (C) H2B and H4

- (D) H3 and H4
- (E) H1 and H4
- 2. Microsatellite DNA is a type of simple-sequence DNAs in eukaryotic genomes. Which of the following statements is correct?
 - (A) They are thought to have originated by forward slippage of the nascent daughter strand during DNA replication.
 - (B) They have the repeats contain 1-50 base pairs.
 - (C) They can be used as probes in DNA fingerprinting.
 - (D) They are concentrated in specific chromosomal locations.
 - (E) They occasionally occur within transcription units and expanded number of repeats may be associated with some hereditary diseases.
- 3. The U2 snRNA base pairs with
 - (A) the 3' splice site of the intron.
 - (B) the branch site/point within the intron.
 - (C) a sequence spanning the first exon-intron boundary.
 - (D) the 5' splice site of the intron.
 - (E) a sequence spanning the intron-second exon boundary.
- 4. The 23S rRNA of the large subunit of bacterial ribosomes interacts with
 - (A) small subunit ribosomal proteins only.
 - (B) large subunit ribosomal proteins only.
 - (C) the 3° CCA terminus of peptidyl tRNA in the P and A sites.
 - (D) the 3' untranslated region of the mRNA.
 - (E) the 5' untranslated region of the mRNA.
- 5. The closest known relative of mitochondria among bacteria is
 - (A) cyanobacteria
- (B) *E. coli*.
- (C) Salmonella.

- (D) Bacillus.
- (E) Rickettsia.
- 6. An increase in the rate of translation of an mRNA
 - (A) is the fastest way to increase the amount of a protein.
 - (B) can be due to a protein binding the 3'UTR of the mRNA.
 - (C) can be due to lengthening the poly-A tail on the mRNA.
 - (D) can be due to changes in the amount of translation initiation factors.
 - (E) all of the above.

科目:分子生物學【生科系碩士班甲組選考、乙組選考】

7.	The majority of human transposable elements are			
	(A) insertion sequences	(B) sim	(B) simple transposons	
	(C) composite transposons	(D) non	(D) non-replicative transposons	
	(E) retrotransposons			
8. Nucleotide excision repair primarily works on				
	(A) abasic sites in DNA (E		B) double strand breaks	
	(C) uracil in DNA	(D) bulk	ry, helix-distorting DNA damage	
(E) normal, but mismatched bases				
9. Gene conversion is a consequence of:				
	(A) repair of ultraviolet light damage to DN		(B) heteroduplex formation	
	(C) defects in recombinational repair		(D) transposition	
	(E) retrotransposition			
10. A common mechanism for regulated alternative splicing involves:				
	(A) mutation of a 5' splice site		(B) mutation of a 3' splice site	
	(C) mutation of the internal branch site		(D) use of a slicing repressor protein	
(E) use of mircoRNA				
11. The precursor to a microRNA is:				
	(A) tRNA (B)) mRNA	(C) rRNA	
	(D) snoRNA (E) a double-stranded region of RNA			
12. In E. coli, what marks the strand to use as template in mismatch repair?				
	(A) A methyl group on adenine		(B) An ethyl group on guanine	
	(C) A methyl group on uracil		(D) A nick in the DNA	
	(E) A gap in the DNA			
13. On many plasmid modern cloning vectors, the multiple cloning site used for insertion				
of I	DNAs is present			
	(A) within a drug-resistance gene		(B) at the origin of replication	
	(C) within the $lacZ$ gene		(D) at the centromere	
(E) at the telomere				
14. A mutation in a protein-coding sequence that does not alter the amino acid sequence is				
	(A) a neutral mutation	` ′	a frame-shift mutation	
	(C) a non-sense mutation	(D)	an expansion mutation	
	(E) a silent mutation			
15. During transcription initiation, what acts as a bridge between regulatory eukaryotic				
transcription factors and RNA polymerase?				
(A) The TATA box		` ,	(B) CAP	
	(C) Mediator (D) CREB			
	(E) The carboxyl terminal domain (CTD)			

科目:分子生物學【生科系碩士班甲組選考、乙組選考】

請注意:第16~20題,每題3分。

- 16. You prepare four different human gene libraries. One is a genomic library made from skin, the second is a genomic library made from skeletal muscle, the third is a brain cDNA library, and the fourth is a pancreatic cDNA library. Which pair of libraries will have the greatest overlap in the cloned sequences they contain?
 - (A) Skeletal muscle genomic and pancreatic cDNA libraries
 - (B) Skeletal muscle cDNA and brain cDNA libraries
 - (C) Skin genomic and pancreatic cDNA libraries
 - (D) Skin genomic and brain cDNA libraries
 - (E) Skin genomic and muscle genomic libraries
- 17. Position effect variegation of *Drosophila* eye color provided insight into:
 - (A) the effect of chromatin structure on gene expression
 - (B) the existence of mutagens
 - (C) the role of insulators in the regulation of gene expression
 - (D) the existence of eye color mutations
 - (E) the random and spontaneous nature of mutation
- 18. A loss-of-function mutation in a histone deacetylase gene is predicted to:
 - (A) decrease mRNA stability
 - (B) increase the frequency transcription initiation
 - (C) decrease the frequency transcription initiation
 - (D) increase rates of translation
 - (E) decrease rates of translation
- 19. The reason an ampicillin-resistance gene is present on many cloning vectors is to provide
 - (A) a site for inserting DNA fragments into the plasmid
 - (B) a means of learning which cells have taken up the cloning vector
 - (C) a means of distinguishing which cells have taken up native cloning vector and which have taken up a recombinant cloning vector
 - (D) a mechanism for blue/white colony screening
 - (E) a mechanism for protecting mammalian cells from ampicillin toxicity
- 20. Which of the following levels of control provides the most rapid means of changing transcription factor activity?
 - (A) Transcriptional control of transcription factor activity
 - (B) Splicing control of transcription factor activity
 - (C) mRNA stability control of transcription factor activity
 - (D) Translational control of transcription factor activity
 - (E) Post-translational control of transcription factor activity

科目:分子生物學【生科系碩士班甲組選考、乙組選考】

- II. 配合題:請將左邊名詞配合最適合的右邊敘述(單選)。每題3分。
- 21. Xenoderma pigmentosum
- 22. AAUAAA
- 23. Sex-lethal protein
- 24. S-adenosylmethionine
- 25. Primase
- 26. Operon
- 27. miRNA and siRNA
- 28. TATA-binding protein
- 29. Lariat structure
- 30. Telomeres

- A. Involved in RNA interference.
- B. A RNA polymerase making short RNA primers.
- C. DNA-bending protein involved in transcription initiation
- D. Associated with cellular aging.
- E. A genetic disease defective in nucleotide excision repair
- F. 5' end of the intron joined to branch point A.
- G. Involved in post-translational control.
- H. A genetic disease defective in mismatch repair.
- I. A negative regulator for alternative splicing in Drosophila.
- J. Methyl donor for eukaryotic 5'-cap synthesis.
- K. Pre-mRNA cleavage and polyadenylation.
- L. A DNA polymerase making short RNA primers.

III. 問答題: 25 分

- 1. 此題 10 分 (A) How can a single RNA transcript be translated into different polypeptides in most operons, for example lac operon, of prokaryotes? (B) How can a single primary transcript be translated into different polypeptides in gene expression of eukaryotes?
- 2. 此題 15 分 The following techniques are very important in both research of molecular biology and biotechnology. Describe briefly the essential points of (A) DNA sequencing; (B) PCR; (C) Site-directed mutagenesis.