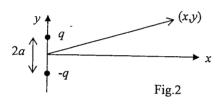
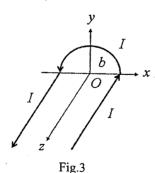

國立中央大學100學年度碩士班考試入學試題卷

所別:機械工程學系光機電工程碩士班 乙組(光機)(一般生) 科目:電磁學 共 / 頁 第 / 頁 本科考試可使用計算器,廠牌、功能不拘 *請在試卷答案卷(卡)內作签

1. Two parallel-plate capacitors with dielectric materials are shown Fig. 1(a) and (b). κ_1 and κ_2 are the dielectric constants. The plane area is A. Find their capacitances in terms of h, κ , A or t. (20 \Re)


 $\begin{array}{ccc}
& \kappa_1 & \iota & \ddots & \ddots \\
& & & & \downarrow \\
& & & & & \downarrow \\
& & & & & \downarrow \\
& & \downarrow \\$

- 2. A spherical drop of water carrying a charge of 5×10^{-11} Coul has a potential of 500V at its surface.
 - (a) What is the volume of the drop? (7 分)
 - (b) If two such drops of the same charge and radius combined to form a single drop, what is the potential at the surface of the new drop? ($\varepsilon_0 = 8.854 \times 10^{-12} \text{ F/m}$) (8 %)
- 3. (a) Show that the x component of the electric field due to a dipole p is given at distance point (x,y) by


$$\bar{E}_{x} = \frac{1}{4\pi\varepsilon_{0}} \frac{3pxy}{\left(x^{2} + y^{2}\right)^{5/2}} \hat{x}$$

where x and y are coordinates of a point in Fig. 2. (7 %)

(b) Find the y component of the electric field which due to the same dipole p at distance point (x,y). (8 \Re)

- 4. A current I flows in a very long folded wire with a turned 90° semicircular bend having a radius b, as depicted in Fig. 3. ($\mu_0 = 4\pi \times 10^{-7} \,\text{H/m}$)
 - (a) Find the magnetic flux density B of the semicircular center O. (10 %)
 - (b) If I=10 A, b=100 mm, calculate **B.** (5分)

- Determine the force per unit length between two infinitely long parallel conducting wires carrying currents I_1 and I_2 in the z-direction. The wires are separated by a distance d. (10 %)
- 6. A λ =500 nm harmonic electromagnetic wave whose electric field is in the z-direction in vacuum. (Put in all appropriate units.)
 - (a) Determine both the angular frequency and propagation number for this wave. (6 %)
 - (b) If the amplitude of the electric field intensity, E_0 , is 500 V/m, what is the amplitude of the magnetic field intensity, H_0 ? (4 \Re)
 - (c) Write an expression for both E(z, t) and H(z, t) given that each is each is zero at z=0 and t=0. (10 %)
 - (d) Find the average power density of the wave. (5分)