考 試 科 目資料結構及演算法 所 別資訊科學系 考 試 時 間 2 月 25 日(六) 第 一 節

- 1. (20%) True or False. Please answer "T" or "F" for the following question. Each 2%
 - (1) Both insert and delete operations of a stack take O(1) time.
- (2) f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
- (3) Adjacency-list representation is suitable for dense graph.
- (4) The complexity of parent operation of each element in a binary heap is O(1).
- (5) $\Theta(n!) + O(2^n) = O(2^n)$.
- (6) A complete binary tree having *n* nodes have log*n* levels
- (7) A greedy algorithm always leads to global optimal solution.
- (8) Merge sort is a "in place" sort algorithm.
- (9) Any problem in P is also in NP.
- (10) The class NP consists of those problems that are solvable in non-polynomial time.
- 2. (20%) Single selection. Each 2%
 - (1) Which of the following sorting algorithm takes the least number of comparisons for sorting of the following sequence of data (2, 17, 66, 80, 98, 123, 170, 200)?
 - (a) quick sort (b) insertion sort (c) merge sort (d) heap sort (e) selection sort
 - (2) Solve the following prefix expression: / * 2 5 * 1 2 13 11
 - (a) 0 (b) 1· (c) 4 (d) 12
 - (3) Which of the following formula is the time complexity in term of comparison operations for merge sort of n records?
 - (a) T(n) = T(n/2) + cn
 - (b) $T(n) = 2T(n/2) + c n^2$
 - (c) T(n) = T(n-1) + cn
 - (d) T(n) = 2T(n/2) + cn
 - (4) The worst case time complexity of finding the maximum in a N-key AVL tree
 - (a) O(1) (b) O($\log N$) (c) O(N) (d) O($N \log N$) (e) O(N^2) (f) O($N^2 \log N$)
- (5) The minimum edges need for a n-node connected undirected graph.
 - (a) n (b) n^2 (c) n-1 (d) $\log n$

國立政治大學 101 學年度研究所 碩士班招生考試試題

第2頁,共3頁

考	試科	目	資料結構及演算法	所	8141	考	試時	問	2	月	25	日(六)	第	 節

- (6) A cycle in a graph that visits every vertex us called as
 (a) Euler circuit (b) Hamiltonian circuit (c) Connected cycle (d) Hamiltonian cycle (e) Euler cycle
- (7) Which of the following are max-heaps?

	1	2	3	4	5	6	7	8	9
(a)	1	3	2	7	9	8	14		
(b)	16	14	10	8	.7	9	3	2	4
(c)	17	10	14	7	8	3	9	11	
(d)	18	8	9	14	5	6	3	1	

- (8) The worst case time complexity of finding the minimum or maximum in a Binary Search Tree with N elements is
 - (a) O(1) (b) O($\log N$) (c) O(N) (d) O($N \log N$) (e) O(N^2)
- (9) What is the time complexity of $T(n) = 5T(n/2) + \Theta(n^3)$
 - (a) $\Theta(n^2)$ (b) $\Theta(n^{\lg 5})$ (c) $\Theta(n^3 \log n)$ (d) $\Theta(n^3)$
- (10) The maximum height of the recursion tree for the recurrence T(n)=T(n/3)+T(2n/3)+cn will be
 - (a) $\log n$ (b) $\log_{3/2} n$ (c) $3 \log n$ (d) 2^n

說明:3~8題,請書寫必要的解題過程。僅書寫答案而缺乏必要的過程,亦無法**獲得該題滿分。**可使 用中文或英文作答。

3. (10%) Procedure Q3 takes a n-element integer array p[1..n] and an integer n as input. Let T(n) denote the total number of calls made to Q3(p, n). Please analyze the complexity of T(n) in following pseudo code, and propose a better pseudo code

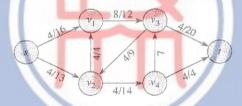
```
Q3(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n


5 q = \max(q, p[i] + Q3(p, n-i))

6 return q
```

第3頁,共3頁

考 試 科 目資料結構及演算法	8141 所 別資訊科學系	考試時間	2月25日(六)第一節
-----------------	------------------	------	-------------

- 4. (10%) What is an optimal Huffman code tree for the following set of frequencies, a:33 b:4 c:5 d:12 e:6 f:8 g:13. The result of each pass must be listed.
- 5. (10%) $A=(a_{ij})$ and $B=(b_{ij})$ are square $n \times n$ matrices, write a recursive pseudo code to compute their multiplication $C=(c_{ij})$, and analyze the complexity of the pseudo code.
- 6. (10%) Describe an algorithm that, given n integers in the range 0 to k, preprocess the input and then answers any query about how many integers fall into a range $[a \cdots b]$ in O(1) time, where $a, b \in \{0,1,...,k\}$. The preprocess algorithm should be linear time complexity.
- 7. (10%) Give the definition of residual network and augmenting path in a flow network, and draw the residual network and augmenting path of the following flow network G and flow. (note: flow/capacity)

8. (10%) The Fibonacci numbers are defined by recurrence: $F_0=0$, $F_1=1$, $F_i=F_{i-1}+F_{i-2}$ for $i \ge 2$. Write an O(n)-time dynamic-programming algorithm to compute the n th Fibonacci number.