考試科目計算機數學 所 別 資訊科學系 考試時間 2 月 25 日(六) 第 三 節						
I 離散數學部分(60 %)						
(1) 是非題 (10%)						
1.1. $f(n) = O(n^2)$ implies $f(n) = O(n^3)$.						
1.2. If A, B and C are sets of strings, then $(A \cap B) \subset AB \cap AC$.						
1.3. The logical expressions $\sim (p \rightarrow q)$ and $\sim p \rightarrow \sim q$ are logically equivalent.						
1.4. Every complete lattice is bounded.						
1.5. There are regular languages which are not context-free.						
1.6. If G is a simple graph with 10 vertices and 35 edges, it must be connected.						
1.7. There exists a Eular circuit in a complete simple graph K ₆ with 6 vertices.						
1.8. A binary tree of height $n \ge 0$ has no more than 2^n leaves.						
1.9. A tree has more vertices than edges.						
1.10. If G is a digraph with 20 vertices and has a path of length $k \ge 20$, then it must have also a path of length 133.						
(2) 填充題(20%;每格 2%):						
2.1. If we randomly construct a simple graph G with 5 vertices. Let Pr be the probability of G having more than 5 edges. If						
Pr = q/p where p and q are non-negative integers and $gcd(p, q) = 1$. Then $p+q =$.						
2.2. There are different Boolean functions $f(x_1,,x_n)$ of degree $n > 0$, among which there are different Boolean functions $f(x_1,,x_n)$ of degree $n > 0$.						
Boolean functions satisfying the condition that $f(x_1,,x_n) = f(y_1,,y_n)$ if $x_1++x_n = y_1++y_n$.						
2.3. The rooted Fibonacci tree T _n are defined recursively in the following way: T ₁ and T ₂ are both rooted tree						
consisting of a single vertex, and for $n \ge 3$, the tree T_n is constructed from a root with T_{n-1} as its left subtree						
and T _{n-2} as its right subtree. Then T ₁₀ has vertices and its height is						
2.4. Let f be an increasing function satisfies the divide-and-conquer relation $f(n) = 5 f(n/2) + 2n^2$ and the initial						
condition $f(1) = 1$. Then $f(n)$ has the asymptotic order $\Theta(\underline{\hspace{1cm}})$.						
25 The equation $x + y + z < 20$ has non-negative solutions.						
2.6. There are ways to assign 5 different jobs to 4 different employees if every employee is assigned at least one jobs.						
2.7. Let M_R given below be the matrix representation of a relation R. Find the matrix $M_{R,R}$ representing R·R and the matrix						
M_{R+} representing the transitive closure R+ of R.						
$M_{R} = 110 $, $M_{R \cdot R} =$, and $M_{R+} =$.						
$M_{R} = \begin{bmatrix} 101 \\ 110 \\ 010 \end{bmatrix}$, $M_{R \cdot R} = $, and $M_{R+} = $						

考試科目計算機數學	所 別	8141 資訊科學系	考試時間	2 月 25	日(六) 第三節
-----------	-----	---------------	------	--------	----------

I 離散數學部分(續前頁)

計算與證明: (30%)

(3). [10%] Solve the following recurrence relation:

$$a_n = 2 a_{n-1} - 2 a_{n-2}$$

with the initial conditions that $a_0 = 1$ and $a_1 = 2$. Note your solution expression may contain complex numbers.

(4). [10%] Prove by induction that for all integer $n \ge 0$, the number $f_n = 0$

$$\frac{5+\sqrt{5}}{10} \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{5-\sqrt{5}}{10} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

is a non-negative integer.

- (5) [10%] A poset (S, \leq) is said to be well-founded if there is no infinite sequence of elements x_1, x_2, x_3, \ldots such that $x_1 > x_2 > \infty$ x_3 , where $x_i > x_{i+1}$ means $x_{i+1} \le x_i$ but $x_i \ne x_{i+1}$. An equivalent definition of well-foundedness is called the minimal condition which the poset (S, ≤) is said to satisfy if every nonempty subset of S has a minimal element. Show that both definitions are indeed equivalent by completing the proof of the following propositions:
- (a) if (S, ≤) in not well-founded, then it does not satisfy the minimal condition. [4%]
- (b) if (S, \leq) does not satisfy the minimal condition, then it is not well-founded. [6%]

第三頁,共召頁

考試科目計算機數學 所別資訊科學系 考試時間 2月25日(六)第三節

II. 線性代數(40%)

(10%) 1. Let

$$A = \left[\begin{array}{ccc} 1 & 1 & -1 \\ 2 & 3 & k \\ 1 & k & 3 \end{array} \right]$$

Find the values of k for which det A = 0 and hence, or otherwise, determine the value of k for which the following system has more than one solution:

$$x + y - z = 1$$
$$2x + 3y + kz = 3$$
$$x + ky + 3z = 2.$$

Solve the system for this value of k and determine the solution for which $x^2 + y^2 + z^2$ has least value.

(10%) 2. Let

$$U = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 3 & 4 & 0 & 0 & 0 \\ \hline 0 & 0 & 5 & 1 & 2 \\ 0 & 0 & 3 & 4 & 1 \end{bmatrix} \text{ and } V = \begin{bmatrix} 3 & -2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ \hline 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & -4 & 1 \end{bmatrix}$$

(a) Find UV using block multiplication (b) Are U and V block diagonal matrices? (c) Is UV block diagonal?

(10%) 3. Determine whether or not W is a subspace of R^3 where W consists of all vectors (a, b, c) in R^3 such that:

(a)
$$a = 3b$$
 (b) $a \le b \le c$ (c) $ab = 0$
(d) $a + b + c = 0$ (e) $b = a^2$ (f) $a = 2b = 3c$

(10%) 4. Suppose v = (1, 3, 5, 7). Find the projection of v onto W or, in other words, find $w \in W$ that minimizes ||v - w||, where W is the subspace of R^4 spanned by:

(a)
$$u_1 = (1, 1, 1, 1)$$
 and $u_2 = (1, -3, 4, -2)$

(b)
$$v_1 = (1, 1, 1, 1)$$
 and $v_2 = (1, 2, 3, 2)$