编號:

國立成功大學一○○學年度碩士班招生考試試題

共 2頁,第/頁

系所組別: 資訊工程學系 考試科目: 計算機數學

222

考試日期:0220: 節次:3

※ 考生請注意:本試題 ☑可 □不可 使用計算機

Part I.

Linear Algebra (50%)

1. Let
$$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 2 & -1 & -1 \end{bmatrix}$$
,

- (a) Find the characteristic polynomial and Eigenvalues of A. (8%)
- (b) Find the eigenvectors of A. (8%)
- (c) Is matrix A diagonalizable? If yes, calculate the diagonal matrix. (8%)
- (d) Let L be the linear operator mapping \mathbb{R}^3 into \mathbb{R}^3 defined by L(x)=Ax and let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$$
. Find the transition matrix V corresponding to a

change of basis from $\{v_1, v_2, v_3\}$ to $\{e_1, e_2, e_3\}$, and use it to determine the matrix B representing L with respect to $\{v_1, v_2, v_3\}$. (10%)

2. Given the vectors
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$$
, $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 3 \\ 3 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

- (a) Are they linearly dependent? Do they form a basis for ℝ³? Explain and prove your answers. (10%)
- 3. The data set is:

(a) Find the best least squares fit by a quadratic polynomial, $P(x) = C_1 + C_2 x + C_3 x^2$. (6%)

編號:

222

國立成功大學一○○學年度碩士班招生考試試題

共 2 頁 第 2 頁

系所組別: 資訊工程學系 考試科目: 計算機數學

考試日期:0220 · 節次:3

※ 考生請注意:本試題 ☑可 □不可 使用計算機

Part II.

Discrete Mathematics (50%)

一、單選題

- 1. (5%) The probability of each summand is a multiple of 3 in all compositions of 18 is
 - (A). $1/3^{11}$.
 - (B). 1/3¹².
 - (C). 1/2¹¹.
 - (D). 1/2¹².
 - (E). None of the above.
- (5%) Which statement is NOT correct?
 - (A). The coefficient of x^5 in $(1 2x)^{-7}$ is $(32) {11 \choose 5}$.
 - (B). $\sum_{k=0}^{20} (-1)^k {20 \choose 20-k} (20-k)^{15} = 0$
 - (C). If |A| = |B| = 6, there are 6! functions $f: A \rightarrow B$ are invertible.
 - (D). The sequence generated by $f(x) = \frac{1}{3-x}$ is $(-\frac{1}{3})$, $(-\frac{1}{3})^2$, $(-\frac{1}{3})^3$, $(-\frac{1}{3})^4$,...
 - (E). None of the above.
- 3. (10%) Suppose S(n) is a predicate on natural numbers, n, and suppose $\forall k \in \mathbb{N}, S(k) \rightarrow S(k+2)$ hold. Which one following statements **NEVER** hold?
 - (A). $\forall n \geq 0 \ S(n)$.
 - (B). $\forall n \geq 0 \neg S(n)$.
 - (C). $[\exists n S(2n)] \rightarrow \forall n S(2n+2)$.
 - (D). $(\forall n \leq 100 \neg S(n)) \land (\forall n > 100 S(n))$.
 - (E). None of the above.

二、 計算題

- 1. (15%) Let $\Sigma = \{0, 1, 2, 3, 4\}$. For $n \ge 1$, let a_n count the number of string in Σ^n containing an odd number of 1's. Find and solve a recurrence relation for a_n .
- 2. (15%) Find the number of ways to arrange the letters in LAPTOP so that none of the letters L, A, T, O is in its original position and the letter P is not in the third or sixth position.