國立政治大學 105 學年度碩士班招生考試試題

第1頁,共1頁

考試科目 線性代數 所 別 應用數學系 考試時間 2月28日(日)第二節 21112.81162

Show all your work.

- 1. (20 pts) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(a, b, c) = (a b, 2c a). Describe $T^{-1}(3, -2)$.
- 2. (a) (10 pts) Find an orthonormal basis for the subspace spanned by $\vec{x_1} = (2, 0, -1, 2), \vec{x_2} = (0, 1, 1, -2)$ and $\vec{x_3} = (3, -1, 1, 0)$.
 - (b) (10 pts) What is the projection of (2, 5, 7, -3) in this space?
- 3. Let A denote the matrix

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4 \end{bmatrix}$$

- (a) (5 pts) Find the eigenvalues of A.
- (b) (5 pts) Find an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors for A.
- (c) (5 pts) Find a 3×3 orthogonal matrix S and 3×3 diagonal matrix D such that $A = SDS^T$.
- (d) (5 pts) For any integer k, write an explicit formula for A^k .
- 4. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with the property that $T(T(\vec{x})) = T(\vec{x})$ for every vector $\vec{x} \in \mathbb{R}^n$.
 - (a) (5 pts) Write V for the range of T. In other words, $V = \{T(\vec{x}) | \vec{x} \in \mathbb{R}^n\}$. If $\vec{x} \in V$, then what is $T(\vec{x})$?
 - (b) (5 pts) If $\vec{x} \in \mathbb{R}^n$, then what is $T(\vec{x} T(\vec{x}))$?
 - (c) (5 pts) Let $\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}\}$ be a basis for V. Then we can add some more vectors $\vec{u_1}, \vec{u_2}, \cdots, \vec{u_\ell}$ to get a basis β for \mathbb{R}^n . Show that if you replace $\vec{u_1}$ with $\vec{u_1} T(\vec{u_1})$, then you still have a basis.
 - (d) (5 pts) In the same way, we can replace each $\vec{u_i}$ with $\vec{u_i} T(\vec{u_i})$. What is the matrix of T with respect to the basis $\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_k}, \vec{u_1} T(\vec{u_1}), \cdots, \vec{u_\ell} T(\vec{u_\ell})\}$.
- 5. Show that
 - (a) (10 pts) Let $A \in M_{n \times n}(F)$, and let B be a matrix obtained by adding a multiple of one row of A to another row of A. Then $\det(B) = \det(A)$.
 - (b) (10 pts) Let $A \in M_{n \times n}(F)$ has rank less than n, then $\det(A) = 0$.