考試科目微釋分8/16|所別應用數學了,考試時間 >月28日(日)第一節

**** Show all your work for full credit.** Unjustified answers will receive no credit.

- 1. Let $f: R \to R$ be a function satisfying f(x + y) = f(x) + f(y) for all $x, y \in R$. Show that:
 - (a) f(0) = 0 and f(-x) = -f(x) for all $x \in R$.
 - (b) if, in addition, f is continuous at 0, then f is continuous on R. (20%)
- 2. Let ax + by + cz + d = 0 be a plane in the space R^3 . Use Lagrange multipliers to show that the shortest distance from a point (x_0, y_0, z_0) in R^3 to the plane

is
$$\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}$$
. (20%)

3. Let

$$f(x) = \begin{cases} \frac{\sin x}{x}, & 0 < x \le \pi, \\ 1, & x = 0, \end{cases}$$

and R be the region in the plane R^2 bounded by the curve y = f(x), x-axis, and y-axis. Find the volume of the solid generated by revolving the region R about the y-axis.

(20%)

- 4. Let R be a region in the plane \mathbb{R}^2 bounded by a simple closed curve C.
 - (a) Show that the area of R is given by $\frac{1}{2} \oint_C x dy y dx$.
 - (b) Use (a) to compute the area of the region bounded by the ellipse $\frac{x^2}{4^2} + \frac{y^2}{5^2} = 1$. (20%)
- 5. Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be convergent series.
 - (a) Is $\sum_{n=1}^{\infty} a_n b_n$ convergent? Justify your answer.
 - (b) If, in addition, $a_n \ge 0$ and $b_n \ge 0$ for all $n \in N$, show that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} a_n b_n$ both converge. (20%)
 - 一、作答於試題上者,不予計分。
 - 二、試題請隨卷繳交。

註