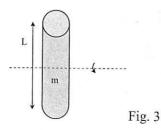

## 國立東華大學招生考試試題第/頁,共乙頁

| 招 | 生号 | & 年 | 度 | 105 招 生 類 別 碩士班                 |
|---|----|-----|---|---------------------------------|
| 系 | 所  | 班   | 別 | 物理學系 應用物理碩士班 (一般組)、材料科學與工程學系碩士班 |
| 科 | 目  | 名   | 稱 | 普通物理                            |
| 注 | 意  | 事   | 項 | 本考科禁止使用掌上型計算機                   |


- 1. (10%) Please qualitatively state the "Gauss's Law".
- 2. (15%) Please qualitatively state the "Newton's 3 Laws of Motion".
- 3. (15%, each in 5%) Elastic collision of two pucks on a frictionless table. Puck A has mass  $m_A$ =0.5 kg, and puck B has mass  $m_B$ =0.3 kg. Puck A has an initial velocity of 4 m/s in the positive x direction and a final velocity of 2 m/s in an unknown direction. Puck B is initially at rest. Fing the final speed  $V_{B2}$  of puck B and the angles  $\alpha$  and  $\beta$  in the Fig. 1.



- 4. In a water molecule the distance between the oxygen and hydrogen atoms is  $9x10^{-11}$  m and the masses of the atoms are  $m_0=16m_{\rm H}$ , where  $m_{\rm H}=1.67x10^{-27}$  kg. The angle between the two H-O bonds is  $105^{\circ}$  (see Fig. 2). Please find the moment of inertia of the molecule about:
  - (5%) (a) An axis along the H-O bond.
  - (5%) (b) An axis through the O atom parallel to the line joining the two H atoms.



5. (10%) Prove the moment of inertia of a cylindrical rod of mass m and length L is  $\frac{1}{12}$  mL<sup>2</sup>.



## 國立東華大學招生考試試題第2頁,共2頁

| 招 | 生 导 | 多年 | 度 | 105 招 生 類 別 碩士班                |   |
|---|-----|----|---|--------------------------------|---|
| 系 | 所   | 班  | 別 | 物理學系 應用物理碩士班(一般組)、材料科學與工程學系碩士班 | : |
| 科 | 目   | 名  | 稱 | 普通物理                           |   |
| 注 | 意   | 事  | 項 | 本考科禁止使用掌上型計算機                  |   |

- 6. Ultraviolet laser at 248 nm is incident on a flat surface and leads to the photoemission from the surface.
  - (5%) (a) What is the work function of the flat surface? (Assume the stopping potential is 2V.)
  - (5%) (b) What is the maximum kinetic energy of the photoelectrons?
- 7. Fig. 4 shows the F vs. t curve for the force exerted by the hip joints on the 50-kg torso of a sprinter as he starts to run.
  - (5%) (a) What is the impulse exerted on the torso?
  - (5%) (b) Estimate the sprinter's change in speed? Assume that the force and the motion are horizontal.

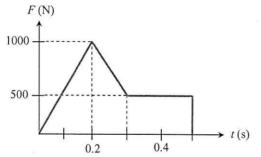



Fig. 4

8. (10%) An electron with an energy of 500 eV moves at right angles to a uniform magnetic field of 1.2 T. Please find the radius of the circular motion.

$$(m_e = 9.11 \times 10^{-31} kg, q_e = 1.6 \times 10^{-19} C)$$

9. (10%) A square metal plate (with area of 64 cm<sup>2</sup>) on one side carries a total charge of  $6 \times 10^{-6} C$ . Please estimate the electric field 0.5-cm above the surface of the plate near the plate's center.

$$(\varepsilon_0 = 8.854 \times 10^{-12} \ C^2 / N \cdot m^2)$$