國立交通大學 100 學年度碩士班考試入學試題

科目:微積分(4051)

考試日期:100年2月18日 第 4節

系所班別:應用數學系數學建模與科學計算碩士班

第 1 頁, 共 2 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

Show all your work and carefully justify all your answers. Answers without explanation will not receive any score.

- 1. (10 points) The region below the graph of $y = \sin x$, above the x-axis and between 0 and π is rotated about the line y = 1. Find the volume of the solid that is generated.
- 2. Consider

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{1}^{5-y} f(x, y, z) dz dy dx.$$

- (a) (6 points) Describe the solid over which the integration takes place and plot its projections onto the yz-plane and xz-plane.
- (b) (8 points) Change the order of integration to dxdzdy and dydzdx.
- 3. (a) (7 points) Evaluate

$$\int \frac{x}{(x+1)(x+2)} \, \mathrm{d}x.$$

(b) (7 points) Evaluate

$$\int_0^1 \frac{\mathrm{d}x}{(2-x)\sqrt{1-x}}.$$

4. Consider the following well-known series representation of π :

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$$
 (1)

- (a) (6 points) Explain how to use (1) to estimate π to within 10^{-10} .
- (b) (6 points) If P is an estimate of π to within 10^{-n} , show that $P + \sin P$ is an estimate to within 10^{-3n} .

Hint: Write $P = \pi + x$.

國立交通大學 100 學年度碩士班考試入學試題

科目:微積分(4051)

考試日期:100年2月18日 第 4節

系所班別:應用數學系數學建模與科學計算碩士班

第 2 頁, 共 2 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

5. (a) (6 points) Consider

$$f(x) = \int_{\tan x}^{x/4} \sin(t^2) dt.$$

Compute $f'(\pi)$.

(b) (8 points) Suppose that f(0) = 0 and

$$f'(\ln x) = \begin{cases} 1, & \text{if } 0 < x \le 1; \\ x, & \text{if } 1 < x < \infty. \end{cases}$$

Find f(x).

6. (a) (8 points) Use a suitable change of variable to compute

$$\iint_{R} (x+y)^2 e^{x^2 - y^2} \mathrm{d}A,$$

where R is the square with vertices (1,0), (0,1), (-1,0) and (0,-1).

(b) (6 points) Evaluate

$$\iiint_{\mathbb{R}^3} \frac{\mathrm{d}V}{(x^2 + y^2 + z^2 + 1)^2}.$$

- 7. (10 points) Find absolute minimum and absolute maximum of the function $f(x,y) = x^3 + x^2y + 2y^2$ on the domain given by $x,y \ge 0, x+y \le 1$.
- 8. Let $f(x) = \cos kx$ with k a positive integer.
 - (a) (6 points) Find

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}f(x).$$

(b) (6 points) Find all positive integers m for which f(x) is a solution of

$$y'' + my = 0$$

for some value of k.