國立清華大學 100 學年度碩士班入學考試試題

系所班組別:聯合招生(工科丙組、先進光源工科組)

考試科目(代碼):工程數學(9801)

1. Find the transient current if

$$R = 6 \Omega$$
, $L = 1 H$, $C = 0.04 F$, $E = 600 (\cos t + 4 \sin t) V$;

(L, R, C, E, are measured in henrys, ohms, farads, volts, respectively.)

Initial current and charge are assumed to be zero. (10%)

2. Consider a general nonhomogeneous linear ODE

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + p_{n-2}(x)y^{(n-2)} + ... + p_1(x)y' + p_0(x)y = r(x)$$

The particular solution $y_p(x)$ can be solved by the method of variation of parameters. That is,

$$y_p(x) = \sum_{k=1}^n y_k(x) \int \frac{W_k(x)}{W(x)} r(x) dx$$

(Where the y_k 's are n linearly independent homogeneous solutions. W is the Wronskian of $y_1, ..., y_n$, and W_k is identical to W, but with the kth column replaced by a column of zeros-except for the bottom element, which is 1.)

Try to solve the following equation using the method of variation of parameters.

$$y''' + \frac{3}{4}x^{-2}y' - \frac{3}{4}x^{-3}y = 9x^{5/2}$$
 (10%)

國立清華大學 100 學年度碩士班入學考試試題

系所班組別:聯合招生(工科丙組、先進光源工科組)

考試科目 (代碼):工程數學(9801)

3. Solve the following equation by Laplace Transform method.

$$y'+y = f(t), \quad y(0) = 3,$$
where $f(t) = \begin{cases} 0 & 0 \le t < \pi \\ 2\cos t & t \ge \pi \end{cases}$ (10%)

4. Find the basis of solutions y(x) of the following differential equation. Show the details of your work.

$$xy'' + (2x+1)y' + (x+1)y = 0. (10\%)$$

- 5. Find a unit vector normal to surface S given by $cos(xy) = e^z 1$ at the point $(1, \pi, 0)$. (10%)
- 6. Let $\mathbf{F} = (\mathbf{x} \mathbf{y})\mathbf{i} + (\mathbf{y} \mathbf{z})\mathbf{j} + (\mathbf{z} \mathbf{x})\mathbf{k}$. Evaluate the surface integral of \mathbf{F} over the unit sphere defined by $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = 1$. (10%)
- 7. Define the Fourier transform of f(x) to be $\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-iwx} dx$.
 - (a) [5%] Calculate the Fourier transform of $f(x) = \begin{cases} a |x| & , |x| < a \\ 0 & , \text{ otherwise} \end{cases}$
 - (b) [5%] Consider the one-dimensional diffusion equation:

$$\frac{\partial}{\partial t}u(x,t) = D\frac{\partial^2}{\partial x^2}u(x,t)$$
 for $-\infty < x < \infty$

with the initial condition u(x,0) = f(x). Use the Fourier transform to show that the solution of the diffusion equation takes the form $u(x,t) = \int_{-\infty}^{\infty} K(x-\xi,t) f(\xi) d\xi$. Find $K(x-\xi,t)$, which is called the kernel.

[Hint: Gaussian integral
$$\int_{-\infty}^{\infty} \exp\left(\frac{-x^2}{2\sigma^2}\right) dx = \sqrt{2\pi\sigma^2}$$
]

國立清華大學 100 學年度碩士班入學考試試題

系所班組別:聯合招生(工科丙組、先進光源工科組)

考試科目 (代碼):工程數學(9801)

8. (a) [5%] Find and classify all local maxima, local minima and saddles for

$$f(x, y, z) = \exp(2x^2 + xz - 5z^2)$$
.

(b) [5%] Consider a forced vibration system which is described by the equations

$$\frac{d^2x_1}{dt^2} + 2x_1 - x_2 = A\sin(\omega t)$$

$$\frac{d^2x_2}{dt^2} - x_1 + 2x_2 = B\sin(\omega t)$$
, where A, B , and ω are constant.

To seek a particular solution, we assume $x_1(t) = q_1 \sin(\omega t)$ and $x_2(t) = q_2 \sin(\omega t)$. Find q_1 and q_2 .

9. Along the circumference of the circle r=b a solution $T(r,\theta)$ of Laplace's equation is required to take on the value T_0 when $0 < \theta < \pi$ and the value $-T_0$ when $\pi < \theta < 2\pi$. Determine an expression for T valid when r > b. (Show the details of your work.)

$$\left[\nabla^2 T = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r}\right) + \frac{1}{r^2} \frac{\partial^2 T}{\partial \theta^2}\right] \tag{12\%}$$

10. (complex analysis) Prove the following identity

$$\sin^{-1} z + \cos^{-1} z = \frac{1}{2} (4n+1)\pi$$
, $n = 0, \pm 1, \pm 2, ---$ (8%)