國立臺北科技大學 105 學年度碩士班招生考試

系所組別:2132 電機工程系碩士班丙組

第二節 控制系統 試題 (選考)

第一頁 共一頁

注意事項:

- 1. 本試題共 4 題, 共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

1. Considering the following system.

10% (a) Find the equivalent transfer function C(s)/R(s).

10% (b) Let
$$G_1(s) = \frac{1}{s}$$
, $G_2(s) = 1$, $G_3(s) = 1$, $G_4(s) = 1$,
$$G_5(s) = \frac{5}{s+7}$$
, $G_6(s) = 1$, $G_7(s) = \frac{3}{s+2}$, $G_8(s) = \frac{1}{s+6}$.

Determine whether the closed-loop system is stable. Justify your answer.

2. Considering the following system.

- 10% (a) When $K_1 = 1$ and $K_2 = 1$, find the total steady-state error due to step inputs for both the input R(s) and the disturbance D(s).
- 10% (b) Find the sensitivity of the steady-state error for changes in $K_1 = 1$ and $K_2 = 1$. Assume step inputs for both the input R(s) and the disturbance D(s).
- 10% (c) Design the values of K_1 and K_2 to meet the specifications: steady-state error component due to a unit ramp input R(s) is 0.03, and steady-state error component due to a unit step disturbance D(s) is -0.012.
- 3. Considering the following system, where $G(s) = \frac{(s+10)(s+20)}{(s^2-20s+225)(s+30)}$.

- $\underline{10\%}$ (a) Sketch the root locus.
- 10% (b) Find the range of gain K that makes the system stable.
- $\underline{10\%}$ (c) Find the value of gain K that yields closed-loop dominant poles with critically damped response.
- **4.** Given the unity feedback system with the plant $G(s) = \frac{K(s+1)}{s(0.1s-1)}$.
- 10% (a) When K=1, determine the stability of the system by using the Nyquist criterion (stable, marginally stable, or unstable).
- $\underline{10\%}$ (b) Use the Nyquist criterion to find the range of gain K for stability.