國立清華大學100學年度碩士班入學考試試題

系所班組別:數學系碩士班純粹數學組 考試科目(代碼):代數與線性代數(0102)

共2頁,第1頁 請在[答案卷、卡]作答

1. [20%] True or false? With a reason.

- (1) Let G be a group of order 40. If $g \in G$ such that $g^{20} \neq e$ (where e is the identity of G), then G is cyclic and generated by g.
- (2) Let A, B be two m by n matrices over \mathbb{R} . Then

$$Col(A + B) = Col(A) + Col(B)$$

where Col(X) denote the column space of a matrix X.

- 2. [10%] Let C_1, \ldots, C_k be the conjugacy classes of a finite group. Show that each product C_iC_j is a union of conjugacy classes.
- 3. [10%] Let $f(x), g(x) \in \mathbb{Q}[x]$ (the polynomial ring over \mathbb{Q}), and let d(x) be the greatest common divisor of f(x) and g(x). Show that

$$\langle f(x) \rangle + \langle g(x) \rangle = \langle d(x) \rangle$$

where $\langle h(x) \rangle$ denotes the ideal generated by the polynomial h(x).

4. [10%] Let \mathbb{H} denote the quaternions $\{a+bi+cj+dk \mid a,b,c,d \in \mathbb{R}\}$. There exists a matrix $K \in M_2(\mathbb{C})$ such that $\phi \colon \mathbb{H} \to M_2(\mathbb{C})$ defined by

$$\phi(a+bi+cj+dk) = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{bmatrix} + dK$$

for $a, b, c, d \in \mathbb{R}$, gives an isomorphism of \mathbb{H} with $\phi[\mathbb{H}]$.

- (1) Find the matrix K.
- (2) Find another homomorphism $\psi \colon \mathbb{H} \to M_2(\mathbb{C})$ such that ψ gives an isomorphism \mathbb{H} with $\psi[\mathbb{H}]$.

國立清華大學100學年度碩士班入學考試試題

系所班組別:數學系碩士班純粹數學組 考試科目(代碼):代數與線性代數(0102)

共2頁,第2頁 請在[答案卷、卡]作答

- 5. [10%] Let E be a finite extension of a field F. Let $\alpha \in E$ be algebraic of odd degree over F. Show that $F(\alpha) = F(\alpha^2)$.
- 6. [20%] Let T be a linear operator on \mathbb{R}^n and let \mathbf{v} be a nonzero vector in \mathbb{R}^n . The polynomial f(x) is called a T-annihilator for \mathbf{v} if f(x) is a monic polynomial of least degree for which $f(T)(\mathbf{v}) = \vec{0}$.
 - (1) Prove that the T-annihilator for v is unique.
 - (2) Find the *T*-annihilator for $\mathbf{v} = (1, \sqrt{2}, 1) \in \mathbb{R}^3$ where

$$T = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

- 7. [20%] Let V be a finite-dimensional complex inner product space and U is a unitary operator on V such that $U(\mathbf{v}) = \mathbf{v}$ implies $\mathbf{v} = \vec{0}$.
 - (1) Show that I U is invertible.
 - (2) Show that $(I+U)(I-U)^{-1}=(I-U)^{-1}(I+U)$.
 - (3) Show that the linear operator $\sqrt{-1}(I+U)(I-U)^{-1}$ is self-adjoint.
 - (4) For a self-adjoint operator T on V, show that $(T \sqrt{-1}I)(T + \sqrt{-1}I)^{-1}$ is unitary.