系所班組別:工業工程與工程管理學系(甲組)

考試科目(代碼):作業研究(1602)

注意事項: (1) 不得使用計算器。

- (2) 請依題號順序作答。
- (3) 答案必須寫在答案卷上,並須依每一題規定的方式作答。
- (4) 未依規定方式作答,酌量扣分。

15%

1. Consider the following linear program.

Minimize
$$z = c_1 x_1 + c_2 x_2$$

subject to $a_{11}x_1 + a_{12}x_2 \ge b_1$
 $a_{21}x_1 + a_{22}x_2 = b_2, x_1, x_2 \ge 0.$

Suppose we compute the optimal tableau by the Big M method, where we let x_3 be the slack variable of constraint 1, and x_4 and x_5 the artificial variables of constraints 1 and 2 respectively.

Basic Variable	Coefficients of:						
	z	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	RHS
Z	1	0	0	$-\frac{9}{7}$	$\frac{9}{7}$ – M	$\frac{10}{7}$ – M	18
x_1	0	1	0	$-\frac{3}{7}$	$\frac{3}{7}$	$\frac{1}{7}$	3
x_2	0	0	1	$\frac{1}{7}$	$-\frac{1}{7}$	$\frac{2}{7}$	2

Please determine b_1 , b_2 , a_{11} , a_{12} , a_{21} , a_{22} , c_1 and c_2 .

必須在答案卷畫出以下表格並在表格內填寫答案。

(b_1,b_2)	$egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$	(c ₁ , c ₂)

系所班組別:工業工程與工程管理學系(甲組)

考試科目(代碼):作業研究(1602)

15%

2. Consider the following parametric linear programming problem with parametric change on the objective function.

Maximize
$$z = (5+3t)x_1 + (6+5t)x_2 + (8-10t)x_3$$

subject to $x_1 + 2x_2 + x_3 \le 19$
 $x_1 + x_2 + 3x_3 \le 27, x_1, x_2, x_3 \ge 0.$

- (2-1) Determine the optimal basic feasible solution for t = 0. (5%)
- (2-2) Determine the range $[t_1, t_2]$ such that the above basic feasible solution (2-1) remains optimal over the range $t_1 \le t \le t_2$. Also find the objective value f(t) as a function of t. (10%)

必須在答案卷畫出以下表格並在表格內填寫答案。

optimal solution (z, x_1, x_2, x_3) for $t = 0$	$[t_1,t_2]$	f(t)

20%

3. A distributor wants to build several distribution centers to interconnect each of its retailers by a connected network of shortest length, where the length is the sum of the lengths of all links between them. This is the so-called *Steiner Tree* problem (see Figure 1). Given a set R of retailers and a set S of possible locations for distribution centers (*Steiner points*), the problem is to select a subset of S to interconnect all retailers in R with shortest length under the distance function d: E → Z⁺, where E is the set of links and Z⁺ is the set of positive integers.

系所班組別:工業工程與工程管理學系(甲組)

考試科目 (代碼): 作業研究 (1602)

共_四_頁,第_3_頁 *請在【答案卷】作答

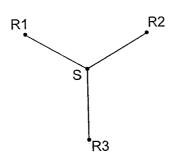


Figure 1. An example of a Steiner Tree with three retailers and a Steiner point.

- (3-1) Try to formulate a mathematical programming model for this minimization problem. (5%)
- (3-2) Write down the corresponding dual program of the above model. (5%)
- (3-3) Formulate a mathematical programming model for the *Minimum Spanning Tree* (MST) problem which includes all nodes in R. (5%)
- (3-4) Distinguish the difference between these two minimization problems. More specifically, prove or disprove if a feasible solution of MST is a feasible solution of Steiner Tree and vice versa. (5%)

15%

- 4. A certain shop has two identical machines that are operated continuously except when they are broken down. Because they break down fairly frequently, the top-priority assignment for a full-time maintenance person is to repair them whenever needed. The time required to repair a machine has an exponential distribution with a mean of 1/2 day. Once the repair a machine is completed, the time until the next breakdown of that machine has an exponential distribution with a mean of 1 day. These distributions are independent.
 - (4-1) Develop the rate diagram for this Markov chain. (5%)
 - (4-2) Construct the steady-state equations. (5%)
 - (4-3) Solve these equations for the steady-state probabilities. (5%)

系所班組別:工業工程與工程管理學系(甲組)

考試科目 (代碼): 作業研究 (1602)

共_四頁,第4頁 *請在【答案卷】作答

20%

- 5. You are given an M/M/1 queueing system in which the expected waiting time and expected number in the system are 120 minutes and 8 customers, respectively.
 - (5-1) What is the mean arrival rate of the queueing system? (5%)
 - (5-2) What is the mean service rate of the queueing system? (5%)
 - (5-3) Determine the probability that a customer's waiting time in the system exceeds 20 minutes. (10%)

15%

6. Machinists who work at a tool-and-die plant must check out tools from a tool center. An average of ten machinists per hour arrive seeking parts. At present, the tool center is staffed by a clerk who takes an average of 5 minutes to handle each request for tools. Since machinists are paid \$10 per hour, each hour that a machinist spends at the tool center costs the company \$10. The company is deciding whether or not it is worthwhile to hire (at \$4 per hour) a helper for the clerk. If the helper is hired, the clerk will take an average of only 4 minutes to process requests for tools. Assume that service and inter-arrival times are exponential. Based on the cost analysis, should the helper be hired?