國立臺灣大學105學年度碩士班招生考試試題

科目:通信原理

節次: 3 共 2 頁之第 1 頁

題號: 425

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。

1. (22%) Consider a pulse amplitude modulation system where a waveform $s(t) = s_1(t) = g(t)$ is transmitted if the source bit is 1 and $s(t) = s_2(t) = -g(t)$ if the source bit is 0. Suppose the signal passes through an additive white Gaussian noise (AWGN) channel and the received signal at the receiver is

$$x(t) = s(t) + w(t)$$

where w(t) is a random Gaussian process with a power spectral density $S_W(f) = N_0/2, \forall f$. At the receiver, a matched filter $h(t) = g^*(-t)$ ("*" denoting complex conjugate) is applied to the received signal x(t), resulting in $r(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$ (Note: without loss of generality, here we allow the transmit and receiver filters to be non-causal). We further assume the signal g(t) has energy $E_s = \int_{-\infty}^{\infty} |g(t)|^2 dt$.

- (a) (8%) Sampling r(t) at time t = 0, we obtain the sample r(0). Express the sample r(0) as a sum of a signal term and a noise term. Find the signal-to-noise ratio at r(0) in terms of E_s and N_0 .
- (b) (7%) Suppose the receiver decides that the transmitted bit is 1 if r(0) > 0 and 0 otherwise. Denote η as the signal-to-noise ratio. If a bit "1" was transmitted, find the probability that the receiver gives a wrong decision (bit 0). Write your answer in terms of η and using the Q-function. Recall that the Q-function is defined by

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-u^2/2} du.$$

- (c) (7%) If the source bit is 0 with a probability p and 1 with a probability 1-p. Find the overall bit error rate of the system in terms of η and p.
- 2. (18%) The root-mean-square (rms) bandwidth of a signal g(t) of finite energy is defined by

$$W_g = \left(\frac{\int_{-\infty}^{\infty} f^2 |G(f)|^2 df}{\int_{-\infty}^{\infty} |G(f)|^2}\right)^{1/2}$$

where G(f) is the Fourier transform of g(t) defined by

$$G(f) = \int_{-\infty}^{\infty} g(t) \exp(-j2\pi f t) dt.$$

Similarly, the root-mean-square (rms) duration of the signal g(t) is defined by

$$T_g = \left(\frac{\int_{-\infty}^{\infty} t^2 |g(t)|^2 dt}{\int_{-\infty}^{\infty} |g(t)|^2}\right)^{1/2}.$$

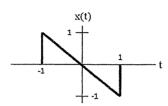
(a) (7%) Show that $T_gW_g \geq \frac{1}{4\pi}$.

題號: 425

- (b) (5%) Give an example of g(t) such that the equality in (a) holds (no explanation needed).
- (c) (6%) Find the necessary and sufficient conditions for the equality in (a) to hold.
- (5%) Which of the following is true? (Each correct choice gets 1 point; each incorrect choice gets -1/2 points; leaving the whole problem blank gets zero points).
 - (A) Compared to the amplitude modulation (AM), the double-side band suppressed carrier (DSB-SC) modulation scheme saves both bandwidth and power.
 - (B) Coherent BPSK and QPSK have the same bit error rate performance.
 - (C) Delta modulation may suffer from a slope overload distortion if the message signal varies too fast.
 - (D) In pulse-code modulation, if the sampling frequency is greater than twice the maximum frequency content of the message signal, then the quantization error can be reduced to zero.
 - (E) None of the above.
- 4. (5%) Which of the following is true?
 - (A) In a non-coherent receiver, the carrier phase synchronization can be inaccurate but the knowledge of the symbol timing should still be available.
 - (B) Compared with the ideal Nyquist channel, the raised-cosine spectrum requires a greater bandwidth resource, but is less sensitive to symbol timing errors.
 - (C) An equalizer at the receiver can be used to remove or mitigate the effect of inter-symbol interference.
 - (D) In an M-ary discrete PAM system, applying a gray code may help improve its bit error rate performance, but not the symbol error rate performance.
 - (E) None of the above.

題號: 425

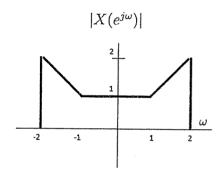
節次: 3

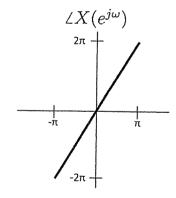

國立臺灣大學105學年度碩士班招生考試試題

科目:通信原理

題號:425

共 2 頁之第 2 頁


5. Calculating the Fourier transform $X(j\omega)$ of the signal x(t) below (9%).



- 6. Suppose we are given the following facts about a sequence x[n]:
 - x[n] is periodic with period N=6.
 - $\sum_{n=0}^{5} x[n] = 3$
 - $\sum_{n=1}^{6} (-1)^n x[n] = 2$
 - x[n] has the minimum power per period among the set of signals satisfying the preceding three conditions.

Please find the sequence x[n] (12%).

- 7. Consider the sequence x[n] whose Fourier transform $X(e^{j\omega})$ is depicted for $-\pi \le \omega \le \pi$ as below. For each of the following statements, please determine a statement is true, false or uncertain (due to insufficient information).
 - (a) x[n] is periodic (3%).
 - (b) x[n] is real (3%).
 - (c) x[n] has finite energy (3%).

- 8. Consider a stable and causal system with impulse response h(t) and system function H(s). Suppose H(s) is rational, contains a pole at s=-3, and does not have a zero at the origin. The location of all other poles and zeros is unknown. For each of the following statements, please determine a statement is true, false or uncertain (due to insufficient information).
 - (a) $\int_{-\infty}^{\infty} h(t)dt = 0$ (2%)
 - (b) The Fourier transform of $h(t)e^{5t}$ converges. (2%)
 - (c) $\frac{dh(t)}{dt}$ contains at least one pole in its Laplace transform. (2%)
 - (d) h(t) has finite duration (2%)
 - (e) H(s) = H(-s) (2%)
 - (f) th(t) is the impulse response of a causal system. (2%)
- 9. Consider a stable and causal system with impulse response h[n] and system function H(z). Suppose H(z) contains a pole at $z=\frac{1}{3}$, and a zero somewhere on the unit circle. The location of all other poles and zeros is unknown. For each of the following statements, please determine a statement is true, false or uncertain (due to insufficient information).
 - (a) The Fourier transform of $3^{-n}h[n]$ converges. (2%)
 - (b) $H(e^{j\omega}) \neq 0$ for all ω (2%)
 - (c) h[n] has finite duration (2%)
 - (d) h[n] is real (2%)

試題隨卷繳回