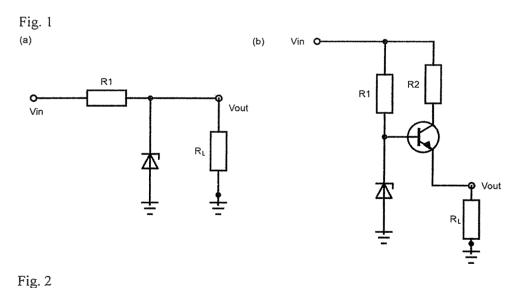
題號: 434

1.

國立臺灣大學 105 學年度碩士班招生考試試題

科目:應用電子學


題號: 434

頁之第 /

節次: 7

(a) (10%) Please draw a representative voltage-current characteristic curve of a typical diode.

- (b) (15%) Fig. 1(a) shows a regulated voltage supply circuit in which the Zener diode operates in the reverse breakdown region and has a V-I characteristic of $I_D(mA) = 10 V_D(V) + 90$. Design the value of R1 to achieve $V_{out} = 10V$, given $V_{in} = 24V$ and R_L (load resistance)= 6 k Ω . What is the percentage change in Zener current I_D if the load current is changed to 0 (no load condition)?
- (c) (15%) Following (b), use the circuit shown in Fig. 1(b) to design R1 and R2 to achieve $V_{out} = 10V$, given the condition of $V_{in} = 24V$, $R_L = 6 \text{ k}\Omega$ and $\beta = 100$ for the transistor. What is the percentage change in Zener current I_D if the load current is changed to 0 (no load condition)?
- (d)(16%) Assume the Zener diode has an ideal characteristic curve, that is, a vertical line at $V_D = -10V$ with $I_D \le$ -10mA. Calculate the maximum power dissipated by the Zener diode in the circuit shown in Fig. 1(a) and Fig. 1(b), respectively, for the condition of $R_L = 6 \text{ k}\Omega \sim \infty$, $V_{in} = 20 \text{ V} \sim 24 \text{ V}$, $V_{out} = 10 \text{ V}$ and $\beta = 100$ for the transistor.
- (e) (10%) Discuss the advantage(s) of the circuit shown in Fig. 1(b) compared to the one shown in Fig. 1(a).
- 2. Fig. 2(a) shows a Wheatstone bridge circuit for measuring small changes in resistance. Assume R2=R3=R $_0$ - Δ R, $R1=R4=R_0+\Delta R$, and $V_S=5V$. A capacitor C is added in order to reduce the effect of noise (V_{noise}).
 - (a) (16%) Derive the frequency response of V_{out}/V_S where $V_{out}=V_b-V_a$ as a function of the angular frequency ω , and find the capacitor value to achieve a cutoff frequency of 300 Hz given R_0 =300 Ω and ΔR =1.5 Ω .
 - (b) (18%) Assume V_{noise} , shown in Fig. 2(b), is an ideal square-wave pulse with duration of 1 ms and a peak voltage of 1V, R_0 =300 Ω and ΔR =1.5 Ω . Calculate and draw the transient response of V_{out} for t = 0~2 ms.

(b) (a) 1 ms R1 R3 t=0 t=1 ms R2 R4