題號: 421 國立臺灣大學 105 學年度碩士班招生考試試題

科目:數學節次: 4

題號: 421

共 之 頁之第 / 頁

※ 注意:請於試卷內之「非選擇題作答區」作答,並應註明作答之題號。

From Problem 1 to Problem 4, your answer will be considered correct only if all the true statements are selected.

- 1. (5%) Let $A, B \in M_{n \times n}(F)$, where F = C or R. Which of the following statements are true?
 - (a) tr(AB) = tr(BA)
 - (b) tr(AB) = tr(A)tr(B)
 - (c) $tr(B^{-1}AB) = tr(A)$
 - (d) $tr(A^k) = (tr(A))^k$
 - (e) $tr(A \pm B) = tr(A) \pm tr(B)$
- 2. (5%) Let $A, B \in M_{n \times n}(F)$, where F = C or R. Which of the following statements are true?
 - (a) det(AB) = det(BA)
 - (b) det(AB) = det(A)det(B)
 - (c) $det(B^{-1}AB) = det(A)$
 - (d) $det(A^k) = (det(A))^k$
 - (e) $det(A \pm B) = det(A) \pm det(B)$
- 3. (5%) Which of the following statements are true?
 - (a) If A and B are invertible matrices, then the matrix $C = A^{-1} + B^{-1}$ is also invertible.
 - (b) If R is a rectangular matrix, then $A = R^T R$ is positive definite.
 - (c) Every orthogonal set is linearly independent.
 - (d) $T = \begin{pmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{pmatrix}$, where T_{11} is a $p \times p$ matrix, T_{22} is a $q \times q$ matrix, and T_{12} is a $p \times q$ matrix. The set of eigenvalues of T is the union of the sets of eigenvalues of T_{11} and T_{22} .
 - (e) If $T: V \to W$ is a linear transformation with V and W are vector spaces over a field F. Then, ker(T) is a vector space.
- 4. (10%) Let vectors $x \in \mathbb{R}^n$ be represented as $x = (x_1, x_2, ..., x_n)^T$. Which of the following sets is a subspace of \mathbb{R}^n ?
 - (a) $\{x \in \mathbb{R}^n | \sum_{i=1}^n x_i^2 = n^2 \}$
 - (b) $\{x \in \mathbb{R}^n | x_1 = 1\}$
 - (c) $\{x \in \mathbb{R}^n | \sum_{i=1}^n \alpha_i x_i = \min_i(\alpha_i) \}$ for some known constants $\alpha_i \in \mathbb{R}$.
 - (d) $\{x \in \mathbb{R}^n | x_{2i} = x_{2i-1}, \forall i = 1, ..., n/2\}$, where n is assumed to be even in this case.
 - (e) $\{x \in \mathbb{R}^n | x_{2i} x_{2i-1} = 1, \forall i = 1, ..., n/2\}$, where n is assumed to be even in this case.
- 5. (5%) Let N be an $n \times n$ matrix over R or C such that $N^k = 0$ for some integer k. Is I+N invertible? If yes, find its inverse. If not, provide the reason why.
- 6. (5%) Define an inner product in \mathbb{R}^2 as $\langle u, v \rangle = \frac{1}{4}u_1v_1 + \frac{1}{9}u_2v_2$. What is the equation of the unit circle?
- 7. (5%) Please find the eigenvectors of $(I+A)^{100}$ given $A = \begin{bmatrix} -4 & -5 \\ 10 & 11 \end{bmatrix}$.

題號: 421

國立臺灣大學 105 學年度碩士班招生考試試題

科目:數學

題號: 421

共 ユ 頁之第 ユ 頁

8. (10%) Please find the determinant of A.

$$A = \begin{pmatrix} 1 + x_1 & x_2 & x_3 & \cdots & x_n \\ x_1 & 1 + x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & 1 + x_3 & \ddots & \vdots \\ x_1 & x_2 & x_3 & \cdots & 1 + x_n \end{pmatrix}$$

9. (10%) Consider

$$x_1 + x_2 + L + x_n < r$$
,

where $x_i \ge 0$ for $1 \le i \le n$. When n = 4 and r = 8, the number of nonnegative integer solutions is

10. (5%) The cycle decomposition of the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 6 & 5 & 8 & 3 & 1 & 7 & 4 \end{pmatrix}$$

11. (10%) The solution to the recurrence equation

$$a_n = 2a_{n-1} + n$$

with $a_0 = 4$ is $a_n = _____.$

12. (10%) The generating function in partial fraction decomposition for the above recurrence equation is _____. (Note that expressions like

$$\frac{x-8}{(x-3)^2} - \frac{9}{x-1}$$

are not partial fraction decompositions.)

13. (5%) Let p(m) denote the number of partitions of $m \in \mathbb{Z}^+$. For example, the number of partitions of m = 5 is p(5) = 7:

The generating function for $\{p(n)\}_{n=0.1K}$ is _____.

14. (5%) A Boolean function f is self-dual if

$$f(x_1, x_2, ..., x_m) = f(\neg x_1, \neg x_2, ..., \neg x_m).$$

There are ______ self-dual Boolean functions of m variables.

15. (5%) For any binary tree with n nodes and i internal nodes, the relation between n and i is $\leq i$.

試題隨卷繳回