題號:274

國立臺灣大學 105 學年度碩士班招生考試試題

科目: 材料力學 (E)

共 / 頁之第/ 頁

節次:8

1. (10%) Consider a state of plane stress described by σ_{11} , σ_{22} and σ_{12} . It is in a state of pure shear if $\sigma_{11} + \sigma_{22} = 0$. Suppose $\sigma_{11} = 100$ MPa, $\sigma_{22} = -100$ MPa, $\sigma_{12} = -100$ MPa. Find a plane oriented at an angle θ such that the normal stress on that plane is zero. In addition, what is the shear stress on that plane?

- $\frac{1}{2}$. (20%) A thin-walled cylindrical pressure vessel of radius r and thickness t is subjected simultaneously to internal gas pressure p and a compressive force F acting at the ends (see Figure 1). Assume $r \gg t$.
 - (a) (10%) What should be the magnitude of compressive force F in order to produce pure shear in the wall of the cylinder?
 - (b) (10%) If force $F = 60\pi$ kN, internal pressure p = 12 MPa, inner radius r = 100 mm, and allowable normal and shear stresses are 100 MPa and 48 MPa, respectively, what is the required thickness of the vessel?

Fig 1. (Problem 2)

3. (20%) A rigid triangular frame is pivoted at C and held by two identical horizontal wires at points A and B (see Fig. 2). Each wire has axial rigidity $EA=10^5$ N and coefficient of thermal expansion $\alpha = 10 \times 10^{-6}$ / °C. If a vertical load P = 100 N acts at point D and both wires have their temperatures raised by 100°C, what are the tensile forces T_A and T_B in the wires at A and B, respectively?

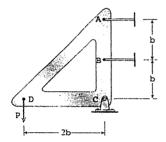


Fig. 2 (Problem 3)

- 4. (30%) A prismatic bar AB of solid circular cross section (diameter d and length L) is fixed at the left-hand end and free at the right-hand end (see Fig. 3). The bar is loaded by a distributed torque of constant intensity T per unit length.
 - (a) (10%) What is the strain energy of the bar?
 - (b) (5%) What is the angle of twist at end B?
 - (c) (10%) What is the angle of twist at the middle of the bar if both ends are fixed?
 - (d) (5%) What is the strain energy of the bar if both ends are fixed?

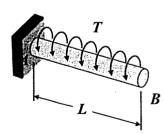


Fig. 3 (Problem 4)

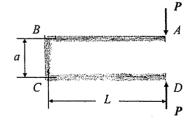


Fig. 4 (Problem 5)

- 5. (20%) The frame ABCD shown in Figure 4 is squeezed by two collinear forces P acting at points A and D. The flexural rigidity EI is constant throughout the frame. Disregard the effects of axial deformations and consider only the effects of bending due to the loads P.
 - (a) (10%) What is the angle of rotation at point B when the loads are applied?
 - (b) (10%) What is the decrease δ in the distance between points A and D when the loads P are applied?

試題隨卷繳回