題號: 250 國立臺灣大學 105 學年度碩士班招生考試試題

超號· 250 科目:近代物理 節次: 2

題號: 250 共 | 頁之第 | 頁

1. (a) The magnetic moment of silver atom is only1 Bohr magneton although it has 47 electrons? Explain. (8%)

- (b) Ignoring the nuclear effects, what is the magnetic moment of an atom in the 3P_0 state? (8%)
- (c) In a Stern-Gerlah experiment, a collimated beam of neutral atoms is split up into 7 equally spaced lines. What is the total angular momentum of the atom? (8%)
- 2. Show that $[x^2, p_x] = 2i\hbar x$ (12%)
- 3. A particle is trapped in a one dimensional potential given by a linear simple harmonic oscillator which potential can be defined as $kx^2/2$. At a time t = 0 the state of the particle is described by the wave function $\Psi = C_1\Psi_1 + C_2\Psi_2$, where Ψ_1 and Ψ_2 are the eigen-functions belonging to the eigen-values E_1 and E_2 . What is the expected value of the energy? (20%)
- 4. (a) Write down three-dimensional time-independent Schrodinger equation in Cartesian coordinates. By separating the variables $\psi(x, y, z) = X(x)Y(y)Z(z)$, solve this equation for a particle of mass m confined to a rectangular box of sides a, b, and c, with zero potential inside. (12%) (b) Show that the particle has energy given by $E = (\hbar^2/8m)[n_x^2/a^2 + n_y^2/b^2 + n_z^2/c^2]$. (12%)
- 5. In the Compton scattering, the photon of energy $E_0 = hv_0$ and momentum $P_0 = hv_0/c$ is scattered from a free electron of rest mass m. Show that (a) the scattered photon will have energy $E = E_0 / [1 + \alpha(1 \cos\theta)]$, where θ is the angle through which the photon is scattered and $\alpha = hv_0/mc^2$ (10%) (b) the kinetic energy acquired by the electron is $T = \alpha E_0 (1 \cos\theta) / [1 + \alpha(1 \cos\theta)]$ (10%)

試題隨卷繳回