題號: 246

國立臺灣大學 105 學年度碩士班招生考試試題

科目:工程數學(F)

1. (10%) Find a family of curves which is the orthogonal trajectories of the curves: $x^2 + (y - c)^2 = c^2$, where c is an arbitrary constant.

2. (10%) The 2-D Laplacian operator in Cartesian coordinate is:

$$\nabla^2 \equiv \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial v^2}\right).$$

Transform this operator in Polar coordinate (r,θ) with $x = r\cos\theta$; $y = r\sin\theta$

3. (20%) Find the complete solution of the following nonhomogeneous matrix equation:

$$x_1' = x_1 - x_2 + \frac{e^{-t}}{1 + t^2}$$

 $x_2' = 2x_1 - 2x_2 + \frac{2e^{-t}}{1 + t^2}$

4. (20%) Find the inverse Laplace transform of the function $Y(s) = \frac{2s^2 - s}{(s^2 + 4)^2}$

5. (20%) Consider the following eigenvalues problem of y(x):

$$y'' + \lambda^2 y = 0 \qquad -p \ge x \le p$$

$$B.C. \begin{cases} y(-p) = y(p) \\ y'(-p) = y'(p) \end{cases}$$

if λ_m and λ_n are two distinct eigenvalues of the problem, show that the corresponding eigenfunctions $y_m(x)$ and $y_n(x)$ are orthogonal in (-p, p).

6. (20%) What is the Fourier expansion of the periodic function

$$f(t) = 4 - t^2 \qquad -2 \le t \le 2$$

And also prove that $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \dots = \frac{\pi^2}{12}$

試題隨卷繳回