國立中正大學 103 學年度碩士班招生考試試題

系所別:生命科學系生物醫學 科目:生物化學

第1節

第1頁,共3頁

I. 單選題 (2% each, total 40%)

- 1. Which amino acids would most likely reside in the membrane-anchoring domain of a membrane embedded protein?
 - A) Isoleucine, valine and phenylalanine
- B) Phenylalanine, valine, and aspartate
- C) Leucine, threonine, and lysine
- D) Lysine, arginine and histidine

E) All of the above

47

- 2. A substrate S can be degraded by two different isozymes (#1 and #2), both obeying Michaelis-Menten kinetics. The Km for isozyme #1 is 0.1 mM and the corresponding value for isozyme #2 is 10 mM. Both isozymes have the same Vmax. If [S] = 5 mM, which of the following statements is corret?
 - A) Isozyme #1 will degrade S faster than isozyme #2.
 - B) Isozyme #2 will degrade S faster than isozyme #1.
 - C) Isozyme #1 will degrade S at a rate equal to half of its maximal velocity.
 - D) Isozyme #2 will degrade S at a rate equal to half of its maximal velocity.
 - E) Isozyme #2 will degrade S at its maximal velocity.
- 3. Which of the following represents the predominant ionic species of aspartate at pH 11?

- 4. The sequence of letters 'WYQN' will represent
 - A) Tryptophan, tyrosine, glutamic acid, asparagine
 - C) Tryptophan, glutamine, tryptophan, asparagine
- B) Tryptophan, tyrosine, glutamine, asparagine
- D) Glutamine, tyrosine, tryptophan, aspartic acid

- 5. Hydrogen bonds in α-helices are
 - A) more numerous than van der Waals interactions
 - C) analogous to the steps in a spiral staircase
- B) not present at Phe residues
- D) roughly parallel to the helix axis
- 6. Which reagent is best suited for cleavage of peptide bonds on the carboxyl side of methionines
 - A) Chymotrypsin

B) Phenyl iosthiocynate

C) CNBr

- D) Trypsin
- 7. Given a unireactant enzyme reaction where a plot of 1/v versus 1/[S] gives a straight line. It was found in three additional experiments each using a different inhibitor concentration that the lines were parallel. This is an example of:
 - A) competitive inhibition.

B) uncompetitive inhibition.

C) mixed inhibition.

D) a ping-pong reaction

國立中正大學 103 學年度碩士班招生考試試題 系所別:生命科學系生物醫學 科目:生物化學

第1節

第2頁,共3頁

8. 1	The role of Asp 102 and His 57 during trypsin catalysis	s is to	
	A) neutralize the charge on the other's side chain	B) keep the specificity pocket open	
	C) function as a proton shuttle	D) clamp the substrate into the active site	
	o) initiation do a proson announc	· · · · · · · · · · · · · · · · · · ·	
9.	Gel-filtration chromatography separates on the basis of		
A) size and shape using porous beads packed in a column B) size using porous beads packed in a column C) shape using porous beads packed in a column			
	D) none of the above		
10	. The conformational changes of hemoglobin from the	The conformational changes of hemoglobin from the T to the R state is initiated by	
	 A) binding of oxygen to the heme B) movement of the proximal histidine towards the heme C) movement of the F-helix, which contains the proximal His D) reorganization of protein-protein contacts between the individual subunits 		
		. 1) C 1 1-1-1-1-	
11	11. The Hill coefficient (n _H) for myoglobin is; whereas n _H is about for hemoglobin. Solution A) 2.8; 1.0 B) 1.0; 2.8 C) 1.0; 4.0		
.,			
	D) 4.0; 1.0 E) None of the above choice	ces are correct.	
	•		
12	. In hemoglobin, allosteric effects occur		
	A) only in humans	B) for maintaining Fe in the Fe ²⁺ state	
	C) to minimize oxygen delivery to the tissues	D) to maximize oxygen delivery to the tissues	
13. The K _m is:			
	A) The time for half of the substrate to be converted to product.		
	B) The time for all of the substrate to be converted to product.		
	C) The [S] that gives half of the maximum reaction rate.		
	D) The [S] that gives the maximum reaction rate.E) The [P] that is produced when the enzyme is saturated with the substrate.		
E) The [P] that is produced when the chrzyme is saturated with the substant-			
14. In isoelectric focusing, proteins are separated on the basis of their A) relative content of positively charged residue only			
	C) relative content of positively and negatively charged residue.		
	D) size		
	,		
15. Proteins are separated in an SDS-PAGE experiment on the basis of their		on the basis of their	
		3) molecular weight	
	, <u> </u>) different isoelectric points	
16. The three-dimensional structure of an enzyme in complex with its substrate was determined			
Ι,	crystallography. The structure revealed that a methionine residue in the active site of the enzyme is in close proximity to an isoleucine residue on a substrate. Which of the following would be the		
	predominant interaction between these two amino a		
	A) covalent bond B) disulfide bon	,	
	D) ionic interaction E) hydrophobic	interaction	

國立中正大學 103 學年度碩士班招生考試試題

系所別:生命科學系生物醫學

第1節

第3頁,共3頁

科目:生物化學

17. The pKa of an amino acid's ionizable group can vary significantly in a protein:

- A) because hydrophobic residues are present in a protein
- B) because neighboring functional groups can affect the stability of the ionized form.
- C) because proteins are in aqueous solutions.
- D) All of the above
- 18. Two types of β -pleated sheets can be called:
 - A) parallel and antiparallel
- B) left-handed and right-handed

C) Φ and Ψ

- D) α and β
- E) None of the Above
- 19. In the equation, $A = \varepsilon bc$, what quantity is represented by " ε "?
 - A) Absorbtivity

B) Molar absorbtivity

C) Path length

- D) None of these
- 20. The pH of a solution is determined by
 - * A) concentration of salt

- B) relative concentration of acids and bases
- C) dielectric constant of the medium
- D) environmental effect.

II. 問答題(60%)

- 1. What sequences are required in an expression vector (for use with *E.coli*), but are not essential in a cloning plasmid? (8%)
- 2. Describe two major routes to produce NADPH in mammals. (6%)
- 3. What is the chemiosmotic model, proposed by Peter Michell, for ATP synthesis in oxidative phosphorylation? (5%)
- 4. Gluconeogenesis and glycolysis are not identical pathways running in opposite directions, although they do share several steps; 7 of the 10 enzymatic reactions of gluconeogenesis are the reverse of glycolytic reactions. List the three bypass reactions that are used in gluconeogenesis, but not used in glycolysis.
 (6%)
- 5. Briefly outline the steps of fatty acid β -oxidation. (6%)
- List the five coenzymes that are required for the oxidative decarboxylation of pyruvate and α-ketoglutarate. (5%)
- 7. Why is it important to recycle NADH produced during glycolysis to NAD⁺? (6%)
- 8. In type I diabetes mellitus, glucose uptake into myocytes and adipocytes is failed. Why? (6%)
- 9. The citric acid cycle begins with the condensation of acetyl-CoA with oxaloacetate. Describe three possible sources for the acetyl-CoA. (6%)
- 10. What is the function of the acidic environment in the stomach? (6%)