試科目

迎初 考試時間 2月27

2016 Mathematical Statistics Examination

- 1. (40%) Please explain the following items.
 - (a) Sufficiency, Completeness and Stochastic Independence (8%)
 - (b) Limiting distribution and Limiting Moment-generating function (8%)
 - (c) Bayesian Estimates and Minimax Principle (8%)
 - (d) Chebyshevs Inequality and the Rao-Cramer Inequality (8%)
 - (e) The Uniformly Most Powerful Tests and Likelihood Ratio Tests (8%)
- 2. (15%) Given $f(x;\theta) = \frac{1}{\theta}$, $0 < x < \theta$, zero elsewhere, with $\theta > 0$, formally compute the reciprocal of

 $100E\{[\frac{\partial lnf(x;\theta)}{\partial \theta}]^2\}.$

Compare this with the variance of $\frac{101}{100}Y_{100}$ where Y_{100} is the largest item of a random sample of size n = 100 from this distribution.

- 3. (10%) Let the joint p.d.f. of X and Y be $f(x,y) = \frac{13}{7}x(x+y), 0 < x < 1, 0 < x$ y < 1, zero elsewhere. Let U = min(X, Y) and V = max(X, Y). Find the joint p.d.f. of U and V.
- 4. (10%) Let X_1, X_2, \ldots, X_n be a random sample from the normal distribution $N(\theta, 100)$. Show the likelihood ratio principle for testing H_0 : $\theta = 10$ against $H_0: \theta \neq 10.$
- 5. (10%) The Pareto distribution is used as a model in study of claim losses and has the distribution function

 $F(x; \theta_1, \theta_2) = 1 - (\frac{\theta_1}{\pi})^{\theta_2}, \theta_1 \leq x, zero \ elsewhere, where \theta_1 > 0 \ and \theta_2 > 0.$

If $X_1, X_2, \ldots, X_{100}$ is a random sample from this distribution, find the maximum likelihood estimators of θ_1 and θ_2 .

6. (15%) Let $X \sim b(n, p)$ and $L(p, d(x)) = 2[p - d(x)]^2$. Let $\pi(p) = 1$ for 0be the prior pdf of p. Then find (a) the posterior pdf of p, (b) the Bayes estimate of p and (c) the Bayes risk.

註

一、作答於試題上者,不予計分