東海大學105學年度碩士班考試入學試題

考試科目: 統計學C

科目代碼: 47112

應考系組: 統計系甲組

考試日期:105年03月06日第4節

使用計算機:可

共 2 頁(第 / 頁)

請於答案卷作答,違者不予計分

1. Two digits are chosen at random without replacement from the set of integers $\{1, 2, 3, 4, 5, 6, 7, 8\}$.

(7%) (a) Find the probability that both digits are greater than 5.

(8%) (b) Show that the probability that the sum of the digits will be equal to 5 is the same as the probability that their sum will exceed 13.

2. Let X be a random variable with probability density function $f(x) = \frac{1}{2}e^{-|x|}$, $x \in (-\infty, \infty)$.

(7%) (a) Compute P(-1 < X < 2).

(8%) (b) Find the probability density function of Y = |X|.

3. Let (X_1, X_2) be a random vector with joint probability mass function $f(x_1, x_2) = \frac{1}{4}$, $(x_1, x_2) = (0, 0)$, (1, 0), (0, 1), (-1, -1).

(8%) (a) Compute the conditional probability mass function of X_2 given $X_1 = 0$.

(7%) (b) Find the probability mass function of $Y = X_1 + X_2$.

4. Let X_1, \ldots, X_n be a random sample from uniform distribution over $[\theta-1, \theta+1]$, $\theta \in (-\infty, \infty)$, and $X_{(1)} = \min\{X_1, \ldots, X_n\}$ and $X_{(n)} = \max\{X_1, \ldots, X_n\}$.

(7%) (a) Is $(X_{(1)}, X_{(n)})$ a sufficient statistic for θ ?

(8%) (b) Find the maximum likelihood estimator for θ .

5. Let X_1, \ldots, X_n be a random sample from $Bernoulli(p), p \in (0, 1)$.

(7%) (a) Give an unbiased estimator for p^2 .

(8%) (b) Find the uniformly minimum variance unbiased estimator (UMVUE) for p^2 .

東海大學105學年度碩士班考試入學試題

考試科目: 統計學C

科目代碼: 47112

應考系組: 統計系甲組

考試日期:105年03月06日第4節

使用計算機:可

共 2頁(第 2 頁)

6. A sample of size 1 is taken from a population with probability density function $f(x;\theta) = \theta x^{\theta-1}$, 0 < x < 1, where $\theta > 0$.

(7%) (a) Find a most powerful (MP) size α of test $H_0: \theta = 1$ against $H_1: \theta = 2$. (8%) (b) Find a uniformly most powerful (UMP) size α of test $H_0: \theta \leq 1$ against $H_1: \theta > 1$.

7. (10%) Show that $\binom{n}{k}p^k(1-p)^{n-k} \to e^{-\lambda}\frac{\lambda^k}{k!}$ as $n \to \infty$ and $p \to 0$ in such a way that $np = \lambda$ remains fixed.