東海大學104學年度碩士班招生考試試題

考試科目:單元操作與輸送現象

應考系組:化材系

考試日期:104年03月08日第3節 使用計算機:可

科目代碼:31011

共2頁,第/頁

本次考試之試題共 3 題,試卷有兩頁,總分 100 分。

- 1. (40 points) Velocity distribution of a steady and fully developed flow of a Newtonian fluid in a section of circular pipe is described as $v = v_{\text{max}} \left[1 \left(\frac{r}{R}\right)^2\right]$, where v is the axial component of the velocity at the radial position of r; v_{max} is the velocity at the axis of the pipe and R is the inner radius of the pipe.
- (a) Show that the average velocity across the circular cross section of the pipe, v_{avg} , is equal to $v_{max}/2$ (8 points)
- (b) The shear stress at pipe wall τ_w , is equal to $2\mu v_{\text{max}}/R$. (6 points)
- (c) By force or momentum balance, show that the pressure drop Δp across the length of the pipe L, is equal to $2(L/R)\tau_w$. (12 points)
- (d) Combining the derivations in (a), (b) and (c), show that $\Delta p = 4(L/R)(\mu v_{\text{max}}/R)$. (8 points)
- (e) The Fanning friction factor f is defined by $f = 2\tau_w / \rho v_{avg}^2$ with ρ represents the density of the Newtonian fluid. Show that f = 16/Re, with the Reynolds number defined as $Re = (\rho v_{avg}D/\mu)$ and D is the inner diameter of the pipe. (6 points)
- 2. (30 points) A furnace wall consisting of 0.25 m of fire clay brick, 0.20 m of kaolin, and a 0.10 m outer layer of masonry brick, respectively, is exposed to furnace gas at 1370 K inside and with air at 300 K adjacent to outside wall. The thermal conductivities of clay, kaolin, and masonry are 1.13, 1.34, and 0.66 W/m-K, respectively. The inside and outside convective heat transfer coefficients are 115 and 23 W/m²-K, respectively.
 - (a) Determine the flux of heat loss of the wall. (10 points)
 - (b) Determine the temperature of the inside wall surface. (5 points)
 - (c) Determine the temperature between clay and kaolin. (5 points)
 - (d) Determine the temperature between kaolin and masonry. (5 points)
 - (e) Determine the temperature of the outside wall surface. (5 points)

東海大學104學年度碩士班招生考試試題

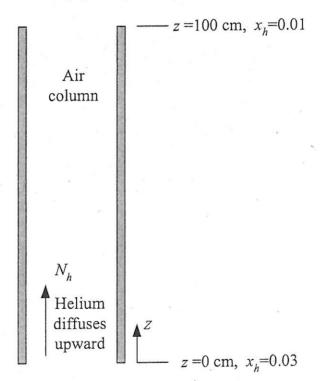
考試科目:單元操作與輸送現象

考試日期:104年03月08日第3節

應考系組:化材系

使用計算機:可

科目代碼:31011 共2頁,第2頁


3. (30 points) As shown in the following figure, helium gas is steadily diffusing in the positive z direction through a stagnant column of air. At 25°C and 1 bar, the diffusivity of helium though air D_{ha} is 0.6 cm²/s.

(a) (10 points) Show that the molar flux of helium with respect to stationary axes,

 $N_h = -\frac{CD_{ha}}{(1-x_h)}\frac{dx_h}{dz}$, where x_h is the local molar fraction of helium and for simplicity, x_h is

assumed depending on z only. C is the total molar concentration of the mixture.

- (b) (5 points) By regarding the mixture is an ideal gas find the total molar concentration of the mixture C
- (c) (15 points) At the point z = 0 cm, the molar fraction of helium is equal to 0.03, while at the top of the column where z = 100 cm, $x_h = 0.01$, find the molar flux of helium.

