國立嘉義大學 104 學年度

電機工程學系碩士班招生考試試題

科目：電子學（可使用工程計算機）

1．If $V_{1}=5 \cos 2 t \mathrm{mV}$ and $V_{2}=2 t \mathrm{mV}$ ，find V_{0} in the op amp circuit as shown in Fig． 1 below．Assume that the voltage across the capacitor is initially zero．（ 15% ）

Fig． 1

2．If $V_{1}=7 \mathrm{~V}$ and $V_{2}=3.1 \mathrm{~V}$ ，find V_{o} in the op amp circuit as shown in Fig． 2 below．（15 \％）

Fig． 2

3．The transistor in the circuit of Fig． 3 has a very high β ．Assume $V_{\mathrm{BE}}=0.7 \mathrm{~V}$ ． Find
（a）For $V_{\mathrm{B}}=+2 \mathrm{~V}$ ，find V_{E} and V_{C} ．（Each answer takes 8% ）
（b）For $V_{\mathrm{B}}=+1 \mathrm{~V}$ ，find V_{E} and V_{C} ．（Each answer takes 8% ）
（c）For $V_{\mathrm{B}}=0 \mathrm{~V}$ ，find V_{E} and V_{C} ．（Each answer takes 8\％）

Fig． 3
4. Consider the basic BJT current mirror of Fig. 4, when Q_{1} and Q_{2} are matched devices having $I_{S}=10^{-15} \mathrm{~A}$.
(a) If β of the transistor is 20 , what is the current gain " $I_{\mathrm{O}} / I_{\mathrm{REF}}$ ", Neglect the Early effect. (8\%)
(b) If $I_{\text {REF }}=2 \mathrm{~mA}$, and the Early voltage is 90 V . Neglecting the effect of finite β, V_{O} changing from 1 V to 10 V , find the change in " ΔI_{O} ". (8\%)

Fig. 4
5. In the circuit of Fig. 5, the NMOS transistor has $\left|V_{\mathrm{t}}\right|=0.9 \mathrm{~V}$ and $V_{\mathrm{A}}=50 \mathrm{~V}$ and operates with $V_{\mathrm{D}}=2 \mathrm{~V}$. What is the voltage gain " $\nu_{\mathrm{o}} / \nu_{\mathrm{i}}$ "? (12 \%)

Fig. 5
6. The NMOS transistors in the circuit of Fig. 6 have $V \mathrm{t}=1 \mathrm{~V}, \mu_{n} C_{o x}=120$ $\mu \mathrm{A} / \mathrm{V}^{2}, \lambda=0$, and $L_{1}=L_{2}=1 \mu \mathrm{~m}$. Find required values to obtain the voltage and current values indicated.
(a) Find the required value of gate width " W_{1} " for Q_{1}. (6\%)
(b) Find the required value of gate width " W_{2} " for Q_{2}. (6\%)
(c) Find the value of " R ". (6\%)

Fig. 6

