國立嘉義大學 104 學年度

資訊工程學系碩士班招生考試試題

科目:資料結構

一、選擇題

1. The pseudo codes shown below are a sorting algorithm. What kind of sorting algorithm is

it? (10%)	void
(a) bubble sort	{
(b) heap sort	in in
(c) quick sort	if
(d) merge sort	

void sorting(int list[], int left, int right)
{
int value, i, j;
int temp;
if (left < right) {
i = left; j = right+1;
value = list[left];
do {
do i++; while (list[i] < value);
do j; while (list[j] > value);
if (i < j) SWAP(list[i], list[j], temp);
} while (i < j);
SWAP(list[left], list[j], temp);
sorting(list, left, j-1);
sorting(list, j+1, right);
}
}

- 2. The pseudo codes shown below are an algorithm of producing minimum cost spanning trees. What kind of algorithm is it? (10%)
 - (a) Kruskal's Algorithm
 - (b) Prim's Algorithm
 - (c) Sollin's Algorithm
 - (d) Knuth–Morris–Pratt Algorithm

T= {}; while (T contains less than n-1 edges && E is not empty) { choose a least cost edge (v,w) from E; delete (v,w) from E; if ((v,w) does not create a cycle in T) add (v,w) to T else discard (v,w); if (T contains fewer than n-1 edges) printf("No spanning tree\n");

- 3. Which of the description about a max heap is not the correct one?(10%)(a) a complete binary tree
 - (b) a finite set of one or more nodes
 - (c) the key value in each node is no smaller than the key values in its children
 - (d) the keys in the right subtree are larger than the key in the root

二、問答題

- 1. The original input list is (27, 6, 76, 5, 60, 13, 57, 16, 49, 19). Answer the following two questions. (10%)
 - (a) Give the binary tree T_1 of the input list when the input order is from left to right.
 - (b) Give the max heap T_2 after adjust the binary tree T_1 into a max heap.
- 2. The figure and pseudo codes are shown below. What is the result of executing the pseudo codes? (10%)

```
int *ip;
int x = 2, y;
ip = \&x;
y = *ip + 10;
printf("%d %u %d %u %d %u\n", x, &x, *ip, ip, y, &y);
```

- 3. Use examples to explain the following data structures: (20%)
 - (a) Array
 - (b) Stack
 - (c) Queue
 - (d) Linked list
- 4. (a) Use an example to describe a quick sort algorithm. (10%)
 - (b) Show that the worst-case time complexity of quick sort is $O(n^2)$. (10%)
- 5. Use an example to describe the operations of a priority queue. (10%)

