國立彰化師範大學104學年度碩士班招生考試試題

系所: _ 車輛科技研究所、

1

☆☆請在答案紙上作答☆☆

共2頁,第1頁

1. Please state the following terminologies. (30%)

(1) Controllable system; (5%)

(2) Observable system; (5%)

(3) Phase margin; (5%)

(4) BIBO (bounded-input bounded-output) stability; (5%)

(5) Bandwidth; (5%)

(6) Pole in left half plane. (5%)

2. Find the Laplace transform of $e^{-t} \sin 3t + 2e^{-t} \cos 3t$. (15%)

- 3. Consider a spring-mass-damper cart system as shown in Figure P3. *M* denotes the mass, *B* denotes the viscous friction coefficient, *K* denotes the spring constant, *x* denotes the displacement of the mass, and *T* denotes the applied force on the mass. The positive directions of *x* and *T* are also assigned as in Figure P3, respectively. Assume there is no friction force between wheel and road. Determine
 - (1) The dynamical equation of the system; (5%)
 - (2) The transfer function between T (input) and x (output) (5%)
 - (3) The undamped natural frequency of the system; (5%)
 - (4) The damping ratio of the system. (5%)

Figure P3.

4. Determine the range of K if the system is stable with the characteristic equation

$$s^4 + 3s^3 + 3s^2 + 2s + K = 0.$$
 (15%)

Hint: Routh-Hurwitz criterion.

5. Plot the Bode plot of the system $\frac{5}{s(s+1)(s+5)}$. (10%)

國立彰化師範大學104學年度碩士班招生考試試題

系所: <u>車輛科技研究所、</u>

機電工程學系

選考丙

科目: 自動控制

☆☆請在答案紙上作答☆☆

共2頁,第2頁

6. Determine whether the following systems are state controllable.

$$(1) \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} u ; (5\%)$$

$$(2) \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u \cdot (5\%)$$