國立臺北科技大學 104 學年度碩士班招生考試 系所組別:3722分子科學與工程系有機高分子碩士班乙組 第三節材料科學與工程試題(選考)

- 注意事項:
 1. 本試題共八題,配分共100分。
 2. 請標明大題、子題編號作答,不必抄題。
 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 一. Explain following term (give examples): 【12%, 每小題 6 分】

- 1. Heterogeneous nucleation
- 2. Brittle fracture

二. 【14%, 每小題 7 分】

A boron-doped silicon wafer has an electrical resistivity of $5.00 \times 10^{-4} \,\Omega$ cm at 27°C. Assume intrinsic carrier

mobilities and complete ionization.

- (a) What is the majority-carrier concentration (carriers per cubic centimeter)?
- (b) What is the ratio of boron to silicon atoms in this material? [Assume $\mu_n = 0.1350 \text{ m}^2/(\text{V} \cdot \text{s})$, $\mu_p = 0.048 \text{ m}^2/(\text{V} \cdot \text{s})$. Density of Si is 2.33 g/cm³, Atomic weight of Si is 28.09 g/mol]

【14%, 每小題7分】

- (a) Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates: (1, 0, 0); (0, 0, 1/2); (1/2, 1/4, 0).
- (b) What is the interplanar spacing between parallel closest planes for the above cubic crystal plane with lattice constant of a?

四. 【11%】

For metal with cubic crystal structure, how to use x-ray diffraction data to distinguish between BCC and FCC crystal structure? Derive the equations and explain them.

五. 【12%】

There are two main mechanisms of diffusion of atoms in a crystalline lattice. Describe (give an example) and explain these two mechanism, respectively.

六. 【10%】

If it takes 115 h to 50 percent recrystallize an 1100-H18 aluminum alloy sheet at 250°C and 10 h at 285°C, calculate the activation energy in kilojoules per mole for this process. Assume an Arrhenius-type rate behavior.

七. 【16%, 每小題8分】

A stress of 75 MPa is applied in the [0 01] direction on an FCC single crystal. Calculate (a) the resolved shear stress acting on the (111) [1 01] slip system and, (b) the resolved shear stress acting on the (111) [110] slip system.

八. 【11%】

Phosphorus is diffused into a thick slice of silicon with no previous phosphorus in it at a temperature of 1100° C. If the surface concentration of the phosphorus is 1×10^{18} atoms/cm³ and its concentration at 1 m is 1×10^{15} atoms/cm³, how long must the diffusion time be? $D = 3.0 \times 10^{-13}$ cm²/s for P diffusing in Si at 1100° C.

 $\begin{array}{c|c} z & \text{erf } z \\ \hline 2.2 & 0.9981 \end{array}$

2.4 0.9993